DEbase: Base DE

Description Usage Arguments Value References Examples

View source: R/DEbase.R

Description

Differential Evolution procedure to solve minimization problems with bound constraints

Usage

1
DEbase(funcname, lo, up, n, NP, n_gen, f, CR, strategy, ...)

Arguments

funcname

function to optimize

lo

lower bound (same for each component of the vector x)

up

upper bound (same for each component of the vector x)

n

problem size

NP

population size (should be ~ four times the size of the problem)

n_gen

number of generations (~ ten times the value of NP)

f

F value (usually from 0.1 to 1.1)

CR

crossover rate (it is a probability, should stay between 0 and 1)

strategy

type of strategy implemented. Default to DE/RAND/1

...

parameters to pass at objective function to optimize

Value

The output of the function DEbase is a list (of length 3) containing the following elements:

References

S. Das, S. Mullick, P. N. Suganthan, Recent advances in differential evolution– an updated survey. Swarm and evolutionary computation, vol. 23, 2016, pp. 1–30

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
##implementation of the schwefel function
schwef <- function(x)
{
 if(is.vector(x))
 {
   d <- length(x)
   sum <- sum(x*sin(sqrt(abs(x))))
   y <- 418.9829*d - sum
   return(y)
 }
 if(is.matrix(x))
 {
   d <- ncol(x)
   sum <- apply(x*sin(sqrt(abs(x))),1,sum)
   y <- 418.9829*d - sum
   return(y)
 }
}
##application of DEbase function
set.seed(123)
d <- DEbase(schwef,-500,500,10,40,400,0.8,0.4,strategy=2)

FilippoPic/DEoptimPIC documentation built on Feb. 14, 2022, 5:12 a.m.