library(tidyverse)
library(lubridate)
library(rnoaa)
library(CDECRetrieve)
library(forecast)
# # big chico BIC cdec query ----------------
bic <- cdec_query(station = 'BIC', sensor_num = '25', dur_code = 'H',
start_date = '1998-09-10', end_date = '2014-12-01')
# rnoaa query ----------------
token <- Sys.getenv("token") #noaa cdo api token saved in .Renviron file ex. token='blah'
# chico <- rnoaa::ncdc(datasetid = 'GSOM', locationid = 'CITY:US060005', datatypeid = 'TAVG',
# startdate = '1998-01-01', enddate = '2007-12-31', token = token, limit = 1000)
#
# chico$data %>%
# group_by(station) %>%
# summarise(n())
#
# 2 GHCND:USC00042402 119
# 3 GHCND:USC00046685 117
# 4 GHCND:USR0000CCHC 119
# 5 GHCND:USR0000CCOH 120
#
# cohasset (USR0000CCOH) best location but doesn't have data 1980-1999, look at next best station paradise (USC00046685)
paradise1 <- rnoaa::ncdc(datasetid = 'GSOM', stationid = 'GHCND:USC00046685', datatypeid = 'TAVG',
startdate = '1998-01-01', enddate = '2007-12-31', token = token, limit = 130)
paradise2 <- rnoaa::ncdc(datasetid = 'GSOM', stationid = 'GHCND:USC00046685', datatypeid = 'TAVG',
startdate = '2008-01-01', enddate = '2014-12-31', token = token, limit = 130)
paradise3 <- rnoaa::ncdc(datasetid = 'GSOM', stationid = 'GHCND:USC00046685', startdate = '1980-01-01',
datatypeid = 'TAVG', enddate = '1989-12-31', token = token, limit = 120)
paradise4 <- rnoaa::ncdc(datasetid = 'GSOM', stationid = 'GHCND:USC00046685', startdate = '1990-01-01',
datatypeid = 'TAVG', enddate = '1999-12-31', token = token, limit = 120)
paradise5 <- rnoaa::ncdc(datasetid = 'GSOM', stationid = 'GHCND:USC00046685', startdate = '1979-01-01',
datatypeid = 'TAVG', enddate = '1979-12-31', token = token, limit = 12)
# really high temps 2002-12, 2003-01, value 708 messing with average
bic %>%
# mutate(date = as_date(datetime)) %>%
# filter(between(date, ymd('2002-12-01'), ymd('2003-01-31')),
# parameter_value < 110) %>%
filter(parameter_value < 100) %>%
mutate(year = year(datetime), month = month(datetime)) %>%
group_by(year, month) %>%
summarise(mean_water_temp_f = mean(parameter_value, na.rm = TRUE)) %>%
ungroup() %>%
mutate(date = ymd(paste(year, month, '01', sep = '-')),
mean_water_temp_c = (mean_water_temp_f - 32) * 5 / 9) %>%
ggplot(aes(x = date, y = mean_water_temp_c)) +
geom_col(position = 'dodge') +
geom_hline(yintercept = 18, alpha = .3) +
geom_hline(yintercept = 20, alpha = .3)
big_chico_water_temp <- bic %>%
filter(parameter_value < 100) %>%
mutate(year = year(datetime), month = month(datetime)) %>%
group_by(year, month) %>%
summarise(mean_water_temp_f = mean(parameter_value, na.rm = TRUE)) %>%
ungroup() %>%
mutate(date = ymd(paste(year, month, '01', sep = '-')),
mean_water_temp_c = (mean_water_temp_f - 32) * 5 / 9) %>%
filter(!is.na(date)) %>%
select(date, mean_water_temp_c)
big_chico_water_temp %>%
summarise(min = min(date), max = max(date), max-min)
# read saved query-------------------
big_chico_air_temp <- paradise1$data %>%
bind_rows(paradise2$data) %>%
mutate(date = as_date(ymd_hms(date))) %>%
select(date, mean_air_temp_c = value)
big_chico <- big_chico_water_temp %>%
left_join(big_chico_air_temp) %>%
filter(!is.na(mean_air_temp_c))
big_chico %>%
ggplot(aes(x = mean_air_temp_c, y = mean_water_temp_c)) +
geom_point() +
geom_smooth(method = 'lm', se = FALSE)
big_chico_temp_model <- lm(mean_water_temp_c ~ mean_air_temp_c, data = big_chico)
summary(big_chico_temp_model)
big_chico_temp_model$coefficients
# air temp thresholds
y <- c(18, 20)
air_temp_thresholds <- (y - big_chico_temp_model$coefficients[[1]]) / big_chico_temp_model$coefficients[[2]]
big_chico %>%
ggplot(aes(x = mean_air_temp_c, y = mean_water_temp_c)) +
geom_point() +
geom_smooth(method = 'lm', se = FALSE) +
geom_vline(xintercept = air_temp_thresholds[1], alpha = .2) +
geom_vline(xintercept = air_temp_thresholds[2], alpha = .2) +
geom_hline(yintercept = 18) +
geom_hline(yintercept = 20)
pred <- broom::augment(big_chico_temp_model) %>% pull(.fitted)
truth <- big_chico$mean_water_temp_c
xtab <- table(pred > 18, truth > 18)
xtab <- table(pred > 20, truth > 20)
confusionMatrix(xtab)
paradise_air_temp <- paradise3$data %>%
bind_rows(paradise4$data) %>%
bind_rows(paradise5$data) %>%
bind_rows(paradise1$data) %>%
mutate(date = as_date(ymd_hms(date))) %>%
select(date, mean_air_temp_c = value) %>%
filter(date <= "2000-12-01") %>% # paradise 1 extends to 2008, cut off this here
bind_rows(
tibble(date = seq.Date(ymd('1979-01-01'), ymd('2000-12-01'), by = 'month'),
mean_air_temp_c = 0)
) %>%
group_by(date) %>%
summarise(mean_air_temp_c = max(mean_air_temp_c)) %>%
ungroup() %>%
mutate(mean_air_temp_c = ifelse(mean_air_temp_c == 0, NA, mean_air_temp_c))
ts_paradise <- ts(paradise_air_temp$mean_air_temp_c, start = c(1979, 1), end = c(2000, 12), frequency = 12)
na.interp(ts_paradise) %>% autoplot(series = 'Interpolated') +
forecast::autolayer(ts_paradise, series = 'Original')
big_chico_air_temp_c <- tibble(
date = seq.Date(ymd('1979-01-01'), ymd('2000-12-01'), by = 'month'),
mean_air_temp_c = as.numeric(na.interp(ts_paradise)))
paradise_air_temp %>%
ggplot(aes(x = date, y = mean_air_temp_c)) +
geom_col(fill = 'darkgoldenrod2') +
geom_col(data = big_chico_air_temp_c, aes(x = date, y = mean_air_temp_c)) +
theme_minimal() +
labs(y = 'monthly mean air temperature (°C)')
big_chico_pred_water_temp <- predict(big_chico_temp_model, big_chico_air_temp_c)
big_chico_water_temp_c <- tibble(
date = seq.Date(ymd('1979-01-01'), ymd('2000-12-01'), by = 'month'),
watershed = 'Big Chico Creek',
monthly_mean_temp_c = big_chico_pred_water_temp)
big_chico_water_temp_c %>%
ggplot(aes(x = date)) +
geom_line(aes(y = monthly_mean_temp_c), color = 'red') +
geom_line(data = big_chico_air_temp_c, aes(y = mean_air_temp_c))
write_rds(big_chico_water_temp_c, 'data-raw/big_chico_creek/big_chico_creek_water_temp_c.rds')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.