library(tidyverse)
library(lubridate)
library(rnoaa)
library(dataRetrieval)
# cosumnes river at michigan bar ca 1965-10-01 2016-03-03
cosum_water_temp <- dataRetrieval::readNWISdv(siteNumbers = '11335000', parameterCd = '00010',
startDate = '2000-01-01', endDate = '2016-03-03',
statCd = c('00001', '00002', '00008'))
cosum_water_temp %>%
select(date = Date, max = X_00010_00001,
min = X_00010_00002, med = X_00010_00008) %>%
filter(!is.na(med)) %>%
gather(stat, temp_c, -date) %>%
group_by(year = year(date), month = month(date), stat) %>%
summarise(mean_temp_c = mean(temp_c)) %>%
ungroup() %>%
mutate(date = ymd(paste(year, month, 1, sep = '-'))) %>%
select(date, stat, mean_temp_c) %>%
spread(stat, mean_temp_c) %>%
mutate(mean_max_min = (max + min)/2,
dist_min = abs(min - med),
dist_max = abs(max - med),
dist_mean_max_min = abs(mean_max_min - med)) %>%
select(date, dist_min:dist_mean_max_min) %>%
gather(category, distance, -date) %>%
ggplot(aes(x = distance, color = category)) +
geom_density()
cosum_wt <- cosum_water_temp %>%
select(date = Date, max = X_00010_00001,
min = X_00010_00002, med = X_00010_00008) %>%
gather(stat, temp_c, -date) %>%
group_by(year = year(date), month = month(date), stat) %>%
summarise(mean_temp_c = mean(temp_c)) %>%
ungroup() %>%
mutate(date = ymd(paste(year, month, 1, sep = '-'))) %>%
select(date, stat, mean_temp_c) %>%
spread(stat, mean_temp_c) %>%
mutate(mean_max_min = (max + min)/2) %>%
select(date, mean_water_temp_c = mean_max_min)
cosum_wt %>%
ggplot(aes(x = date, y = mean_water_temp_c)) +
geom_col()
cosum_wt %>% summarise(min(date), max(date))
sac1 <- rnoaa::ncdc(datasetid = 'GSOM', stationid = 'GHCND:USW00023271', datatypeid = 'TAVG',
startdate = '2001-01-01', enddate = '2010-12-31', limit = 120, token = token)
sac2 <- rnoaa::ncdc(datasetid = 'GSOM', stationid = 'GHCND:USW00023271', datatypeid = 'TAVG',
startdate = '2011-01-01', enddate = '2016-12-31', limit = 120, token = token)
cosum_at <- sac1$data %>%
bind_rows(sac2$data) %>%
mutate(date = as_date(ymd_hms(date))) %>%
select(date, mean_air_temp_c = value)
cosum <- cosum_wt %>%
left_join(cosum_at) %>%
filter(!is.na(mean_water_temp_c))
cosum %>%
ggplot(aes(x = mean_air_temp_c, y = mean_water_temp_c)) +
geom_point() +
geom_smooth(method = 'lm', se = FALSE)
cosum_temp_model <- lm(mean_water_temp_c ~ mean_air_temp_c, data = cosum)
summary(cosum_temp_model)
sac3 <- rnoaa::ncdc(datasetid = 'GSOM', stationid = 'GHCND:USW00023271', datatypeid = 'TAVG',
startdate = '1979-01-01', enddate = '1979-12-31', limit = 12, token = token)
sac4 <- rnoaa::ncdc(datasetid = 'GSOM', stationid = 'GHCND:USW00023271', datatypeid = 'TAVG',
startdate = '1980-01-01', enddate = '1989-12-31', limit = 120, token = token)
sac5 <- rnoaa::ncdc(datasetid = 'GSOM', stationid = 'GHCND:USW00023271', datatypeid = 'TAVG',
startdate = '1990-01-01', enddate = '1999-12-31', limit = 120, token = token)
sac6 <- rnoaa::ncdc(datasetid = 'GSOM', stationid = 'GHCND:USW00023271', datatypeid = 'TAVG',
startdate = '2000-01-01', enddate = '2000-12-31', limit = 120, token = token)
sac3$data %>%
bind_rows(sac4$data) %>%
bind_rows(sac5$data) %>%
bind_rows(sac6$data) %>%
mutate(date = as_date(ymd_hms(date))) %>%
select(date, mean_air_temp_c = value) %>%
ggplot(aes(x = date, y = mean_air_temp_c)) +
geom_col()
sac <- sac3$data %>%
bind_rows(sac4$data) %>%
bind_rows(sac5$data) %>%
bind_rows(sac6$data) %>%
mutate(date = as_date(ymd_hms(date))) %>%
select(date, mean_air_temp_c = value)
cosum_predicted_water_temp <- predict(cosum_temp_model, sac)
cosumnes_water_temp_c <- tibble(
date = seq.Date(ymd('1979-01-01'), ymd('2000-12-01'), by = 'month'),
watershed = 'Cosumnes River',
monthly_mean_temp_c = cosum_predicted_water_temp)
cosumnes_water_temp_c$date %>% range()
write_rds(cosumnes_water_temp_c, 'data-raw/cosumnes_river/cosumnes_water_temp_c.rds')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.