Description Usage Arguments Details Value Author(s) Examples
Differential Network
1 2 3 4 5 6 7 8  | diffnet_multisplit(x1, x2, b.splits = 50, frac.split = 1/2,
  screen.meth = "screen_bic.glasso", include.mean = FALSE,
  gamma.min = 0.05, compute.evals = "est2.my.ev3",
  algorithm.mleggm = "glasso_rho0", method.compquadform = "imhof",
  acc = 1e-04, epsabs = 1e-10, epsrel = 1e-10, show.warn = FALSE,
  save.mle = FALSE, verbose = TRUE, mc.flag = FALSE,
  mc.set.seed = TRUE, mc.preschedule = TRUE,
  mc.cores = getOption("mc.cores", 2L), ...)
 | 
x1 | 
 Data-matrix sample 1. You might need to center and scale your data-matrix.  | 
x2 | 
 Data-matrix sample 1. You might need to center and scale your data-matrix.  | 
b.splits | 
 Number of splits (default=50).  | 
frac.split | 
 Fraction train-data (screening) / test-data (cleaning) (default=0.5).  | 
screen.meth | 
 Screening procedure. Options: 'screen_bic.glasso' (default), 'screen_cv.glasso', 'screen_shrink' (not recommended).  | 
include.mean | 
 Should sample specific means be included in hypothesis? Use include.mean=FALSE (default and recommended) which assumes mu1=mu2=0 and tests the hypothesis H0: Omega_1=Omega_2.  | 
gamma.min | 
 Tuning parameter in p-value aggregation of Meinshausen et al (2009). (Default=0.05).  | 
compute.evals | 
 Method to estimate the weights in the weighted-sum-of-chi2s distribution. The default and (currently) the only available option is the method 'est2.my.ev3'.  | 
algorithm.mleggm | 
 Algorithm to compute MLE of GGM. The algorithm 'glasso_rho' is the default and (currently) the only available option.  | 
method.compquadform | 
 Method to compute distribution function of weighted-sum-of-chi2s (default='imhof').  | 
acc | 
 See ?davies (default 1e-04).  | 
epsabs | 
 See ?imhof (default 1e-10).  | 
epsrel | 
 See ?imhof (default 1e-10).  | 
show.warn | 
 Should warnings be showed (default=FALSE)?  | 
save.mle | 
 If TRUE, MLEs (inverse covariance matrices for samples 1 and 2) are saved for all b.splits. The median aggregated inverse covariance matrix is provided in the output as 'medwi'. The default is save.mle=FALSE.  | 
verbose | 
 If TRUE, show output progress.  | 
mc.flag | 
 If   | 
mc.set.seed | 
 See mclapply. Default=TRUE  | 
mc.preschedule | 
 See mclapply. Default=TRUE  | 
mc.cores | 
 Number of cores to use in parallel execution. Defaults to mc.cores option if set, or 2 otherwise.  | 
... | 
 Additional arguments for screen.meth.  | 
Remark:
* If include.mean=FALSE, then x1 and x2 have mean zero and DiffNet tests the hypothesis H0: Omega_1=Omega_2. You might need to center x1 and x2. * If include.mean=TRUE, then DiffNet tests the hypothesis H0: mu_1=mu_2 & Omega_1=Omega_2 * However, we recommend to set include.mean=FALSE and to test equality of the means separately. * You might also want to scale x1 and x2, if you are only interested in differences due to (partial) correlations.
list consisting of
ms.pval | 
 p-values for all b.splits  | 
ss.pval | 
 single-split p-value  | 
medagg.pval | 
 median aggregated p-value  | 
meinshagg.pval | 
 meinshausen aggregated p-value (meinshausen et al 2009)  | 
teststat | 
 test statistics for b.splits  | 
weights.nulldistr | 
 estimated weights  | 
active.last | 
 active-sets obtained in last screening-step  | 
medwi | 
 median of inverse covariance matrices over b.splits  | 
sig.last | 
 constrained mle (covariance matrix) obtained in last cleaning-step  | 
wi.last | 
 constrained mle (inverse covariance matrix) obtained in last cleaning-step  | 
n.stadler
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  | ############################################################
##This example illustrates the use of Differential Network##
############################################################
##set seed
set.seed(1)
##sample size and number of nodes
n <- 40
p <- 10
##specifiy sparse inverse covariance matrices
gen.net <- generate_2networks(p,graph='random',n.nz=rep(p,2),
                              n.nz.common=ceiling(p*0.8))
invcov1 <- gen.net[[1]]
invcov2 <- gen.net[[2]]
plot_2networks(invcov1,invcov2,label.pos=0,label.cex=0.7)
##get corresponding correlation matrices
cor1 <- cov2cor(solve(invcov1))
cor2 <- cov2cor(solve(invcov2))
##generate data under null hypothesis (both datasets have the same underlying
## network)
library('mvtnorm')
x1 <- rmvnorm(n,mean = rep(0,p), sigma = cor1)
x2 <- rmvnorm(n,mean = rep(0,p), sigma = cor1)
##run diffnet (under null hypothesis)
dn.null <- diffnet_multisplit(x1,x2,b.splits=1,verbose=FALSE)
dn.null$ss.pval#single-split p-value
##generate data under alternative hypothesis (datasets have different networks)
x1 <- rmvnorm(n,mean = rep(0,p), sigma = cor1)
x2 <- rmvnorm(n,mean = rep(0,p), sigma = cor2)
##run diffnet (under alternative hypothesis)
dn.altn <- diffnet_multisplit(x1,x2,b.splits=1,verbose=FALSE)
dn.altn$ss.pval#single-split p-value
dn.altn$medagg.pval#median aggregated p-value
##typically we would choose a larger number of splits
# dn.altn <- diffnet_multisplit(x1,x2,b.splits=10,verbose=FALSE)
# dn.altn$ms.pval#multi-split p-values
# dn.altn$medagg.pval#median aggregated p-value
# plot(dn.altn)#histogram of single-split p-values
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.