#' Compute Standardized Estimates With Parametric Exposure Model
#'
#' Compute standardized estimates with parametric exposure model.
#'
#' The standardized estimates are computed using the exposure model.
#' This method requires 2 different formulas which are created from the
#' arguments \code{formula}. The 2 formulas created are for the exposure model
#' and another one for the weighted linear model. Also \code{T}, i.e. the
#' exposure, must always be binary, if not it can be made binary
#' "one can first recode the data so that T = 1 when it is previously equaled,
#' and T = 0 when it previously equaled any value other than t", p. 113.
#'
#' @inheritParams backdr_out_np
#'
#' @source Section 6.2.2
#'
#' @return Dataframe in a useable format for \code{rsample::bootstraps}.
#' @export
#' @examples
#' # An example can be found in the location identified in the
#' # source section above at the github site
#' # https://github.com/FrankLef/FundamentalsCausalInference.
backdr_exp <- function(data, formula, exposure.name, confound.names,
att = FALSE) {
checkmate::assertDataFrame(data)
checkmate::assertFormula(formula)
checkmate::assertFlag(att)
x0 <- "(Intercept)" # name of intercept used by lm, glm, etc.
var_names <- audit_formula(data, formula, exposure.name, confound.names)
outcome.name <- var_names$outcome.name
# exposure model formula
eformula <- paste(exposure.name, paste(confound.names, collapse = "+"),
sep = "~")
eformula <- formula(eformula)
# weighted linear model formula
lformula <- paste(outcome.name, exposure.name, sep = "~")
lformula <- formula(lformula)
# estimate the parametric exposure model
# NOTE: fitted() is the same as using predict(..., type = "response")
# BUT fitted only use the ORIGINAL data, there is no newdata.
eH <- fitted(glm(formula = eformula, family = "binomial", data = data))
assertthat::assert_that(all(!dplyr::near(eH, 0)),
msg = "eH must not equal zero")
# compute the E(T) when ATT is required
e0 <- NA_real_
if (att) {
e0 <- sum(data[, exposure.name] == 1) / nrow(data)
}
# compute the weights
datT <- data[, exposure.name]
if (!att) {
data$W <- datT * (1 / eH) + (1 - datT) * (1 / (1 - eH))
} else {
data$W <- datT * (1 / eH) + (1 - datT) * (eH / (e0 * (1 - eH)))
condT1 <- data[, exposure.name] == 1
EYT1 <- mean(data[condT1, outcome.name])
}
# fit the weighted linear model
coefs <- coef(glm(formula = lformula, data = data, weights = W))
# estimate the expected potential outcome
EY0 <- coefs[x0]
EY1 <- sum(coefs)
if (att) EY1 <- EYT1 # use att values if required
# estimate the effect measures
out <- effect_measures(EY0, EY1)
data.frame(
term = names(out),
estimate = unname(out),
std.err = NA_real_
)
}
#' @rdname backdr_exp
#' @export
standexp.r <- backdr_exp
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.