ssvQC.featureOnly-class | R Documentation |
ssvQC
## S4 method for signature 'ssvQC'
show(object)
ssvQC(
features_config = NULL,
signal_config = NULL,
out_dir = getwd(),
bfc = NULL,
matched_only = TRUE
)
ssvQC.runAll(object)
ssvQC.prepFetch(object)
ssvQC.referenceUsesSameScale(object)
ssvQC.prepFRIP(object)
ssvQC.plotFRIP(object)
ssvQC.prepSCC(object)
ssvQC.plotSCC(object)
ssvQC.prepCapValue(object, query, bfc, use_matched)
ssvQC.prepCorrelation(object)
ssvQC.plotCorrelation(object)
ssvQC.prepFeatures(object, bfc)
ssvQC.plotFeatures(object, force_euler)
ssvQC.prepFragLens(object, query, bfc, use_matched)
ssvQC.prepMappedReads(object)
ssvQC.plotMappedReads(object)
ssvQC.prepSignal(object)
ssvQC.plotSignal(object)
features_config |
Controls features configuration. May be a: QcConfigFeatures object, path to a file defining configuration via QcConfigFeatures.parse, features files to define via QcConfigFeatures.files, or a data.frame to pass to QcConfigFeatures. |
signal_config |
Controls signal configuration. May be a: QcConfigSignal object, path to a file defining configuration via QcConfigSignal.parse, features files to define via QcConfigSignal.files, or a data.frame to pass to QcConfigSignal. |
out_dir |
NYI |
bfc |
BiocFileCache object to use for caching. If NULL, default new_cache() will be used. |
force_euler |
If TRUE forces Euler plots to be generated for a list of feature sets longer than 8. Euler plots can take quite a long time to generate as more feature sets are generated. |
ssvQC |
A ssvQC object |
A ssvQC object. Data needs to be loaded after via ssvQC.runAll or sub-methods ssvQC.plot*.
options(mc.cores = 1)
set.seed(0)
# To make an ssvQC object, confiugration for features (peaks, other genomic
regions) and signal (numeric values on the genome from bam pileups or bigwigs)
features_config_file = system.file(
package = "ssvQC",
"extdata/ssvQC_peak_config.csv"
)
features_config = QcConfigFeatures.parse(features_config_file)
bam_config_file = system.file(
package = "ssvQC",
"extdata/ssvQC_bam_config.csv"
)
bam_config = QcConfigSignal.parse(bam_config_file)
bigwig_config_file = system.file(package = "ssvQC", "extdata/ssvQC_bigwig_config.csv")
bigwig_config = QcConfigSignal.parse(bigwig_config_file)
# Different ways to make ssvQC objects
sqc.complete.file = ssvQC(features_config_file, bam_config_file)
sqc.complete = ssvQC(features_config, bam_config)
sqc.complete.bw = ssvQC(features_config, bigwig_config_file)
sqc.signal = ssvQC(signal_config = bam_config)
sqc.feature = ssvQC(features_config = features_config)
# ssvQC.runAll will run all appropriate QC methods
sqc.signal = ssvQC.runAll(sqc.signal)
sqc.feature = ssvQC.runAll(sqc.feature)
sqc.complete = ssvQC.runAll(sqc.complete)
sqc.complete$plots$signal$heatmaps
sqc.complete$signal_config@plot_value = "RPM"
sqc.complete = ssvQC.plotSignal(sqc.complete)
sqc.complete$plots$signal$heatmaps
sqc.complete$signal_config@plot_value = "linearQuantile"
sqc.complete = ssvQC.plotSignal(sqc.complete)
sqc.complete$plots$signal$heatmaps
sqc.complete$signal_config@plot_value = SQC_SIGNAL_VALUES$RPM_linearQuantile
sqc.complete = ssvQC.plotSignal(sqc.complete)
sqc.complete$plots$signal$heatmaps
write_ssvQC.summary(sqc.complete)
write_ssvQC.per_peak(sqc.complete)
write_ssvQC.correlation(sqc.complete)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.