plotPCA: Plot PCA of gene expression for an assay

plotPCAR Documentation

Plot PCA of gene expression for an assay

Description

Compute PCA of gene expression for an assay, and plot samples coloring by outlier score

Usage

## S4 method for signature 'list'
plotPCA(
  object,
  assays = names(object),
  nPC = 2,
  robust = FALSE,
  ...,
  maxOutlierZ = 20,
  nrow = 2,
  size = 2,
  fdr.cutoff = 0.05
)

Arguments

object

dreamletProcessedData from processAssays() or a list from residuals()

assays

assays / cell types to analyze

nPC

number of PCs to uses for outlier score with outlier()

robust

use robust covariance method, defaults to FALSE

...

arguments passed to MASS::cov.rob()

maxOutlierZ

cap outlier z-scores at this value for plotting to maintain consistent color scale

nrow

number of rows in plot

size

size passed to geom_point()

fdr.cutoff

FDR cutoff to determine outlier

See Also

outlierByAssay()

Examples

library(muscat)
library(SingleCellExperiment)

data(example_sce)

# create pseudobulk for each sample and cell cluster
pb <- aggregateToPseudoBulk(example_sce,
  assay = "counts",
  cluster_id = "cluster_id",
  sample_id = "sample_id",
  verbose = FALSE
)

# voom-style normalization
res.proc <- processAssays(pb, ~group_id)

# PCA to identify outliers
# from normalized expression
plotPCA( res.proc, c("B cells", "CD14+ Monocytes"))

# Run on regression residuals
#-----------------------------

# Regression analysis
fit = dreamlet(res.proc, ~ group_id)

# Extract regression residuals
residsObj = residuals(fit)

# PCA on residuals
plotPCA( residsObj, c("B cells", "CD14+ Monocytes"))

GabrielHoffman/dreamlet documentation built on Nov. 23, 2024, 12:28 a.m.