co_methylation_step1 <- function(csm_ml_matrix){
options(stringsAsFactors=F)
set.seed(123)
data <- as.matrix(csm_ml_matrix)
km.res <- kmeans(data, 3, nstart = 25)
pdf("parameter.pdf")
par(mfrow = c(3,2),mar=c(3,5,2,2));
for(i in 1:3)
{
require(WGCNA)
wgcna.data <- t(data[which(km.res$cluster==i),])
powers = c(c(1:10), seq(from = 12, to=30, by=2))
###Call the network topology analysis function
sft = pickSoftThreshold(wgcna.data, powerVector = powers, verbose = 5,networkType="signed")
####Plot the results:
cex1 = 0.9;
#######Scale-free topology fit index as a function of the soft-thresholding power
plot(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
xlab="Soft Threshold (power)",ylab="Scale Free Topology \n Model Fit,signed R^2",type="n",
main = paste("Scale independence"));
text(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
labels=powers,cex=cex1,col="red");
############this line corresponds to using an R^2 cut-off of h
abline(h=0.80,col="red")
#######Mean connectivity as a function of the soft-thresholding power
plot(sft$fitIndices[,1], sft$fitIndices[,5],
xlab="Soft Threshold (power)",ylab="Mean Connectivity", type="n",
main = paste("Mean connectivity"))
text(sft$fitIndices[,1], sft$fitIndices[,5], labels=powers, cex=cex1,col="red")
#save(sft,file=paste0("kmeans_",i,"sft.Rdata"))
}
dev.off()
return(km.res)
}
###########################################################################
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.