\
\
Lists needed for occurrence data
\
To install, run :
## GBIF columns to keep ---- gbif_keep <- c(## TAXONOMY "searchTaxon", "species", "scientificName", "taxonRank", "taxonKey", "genus", "family", ## CULTIVATION "cloc", "basisOfRecord", "locality", "establishmentMeans", "institutionCode", "datasetName", "habitat", "eventRemarks", ## RECORD ID "recordedBy", "identifiedBy", ## PLACE/TIME "lat", "lon", "decimalLatitude", "decimalLongitude", "country", "coordinateUncertaintyInMeters", "geodeticDatum", "year", "month", "day", "eventID") ## ALA Enviro cols ---- ## Createa a table of all the ALA columns # ALA_columns <- ala_fields("occurrence_stored",as_is = TRUE)$description[231:395] # names(ALA)[58:215] ## ALA columns to keep ---- ALA_keep <- c(## TAXONOMY "searchTaxon", "scientificName", "scientificNameOriginal", "species", "taxonRank", "rank", "genus", "family", ## CULTIVATION "occCultivatedEscapee", "basisOfRecord", "locality", "establishmentMeans", "institutionCode", "datasetName", "habitat", "eventRemarks", "taxonomicQuality", ## RECORD ID "recordedBy", "id", # "catalogNumber", "identificationID", "identifiedBy", "occurrenceID", "basisOfRecord", "institutionCode", ## PLACE/TIME "lat", "lon", "coordinateUncertaintyInMetres", "coordinateUncertaintyInMeters", "country", "state", "IBRA7Regions", "IBRA7Subregions", "localGovernmentAreas", "locality", "geodeticDatum", "year", "month", "day", # "eventDate", "eventID", ## Quality "zeroCoordinates", "zeroLatitude", "zeroLongitude", "coordinatesCentreOfCountry", "countryCoordinateMismatch", "invertedCoordinates", "inferredDuplicateRecord") ## Enviro # env_cols <- names(ALA)[58:215] common_cols <- c('searchTaxon', 'scientificName', 'species', 'genus', 'family', 'basisOfRecord', 'locality', 'institutionCode', 'id', 'catalogNumber', 'lat', 'lon', 'country', 'year', 'month', 'eventDate')
\ \ \
\
Lists needed for raster analyses.
\
## Create the variables needed to access current environmental conditions + their names in the functions ## Names of all the worldclim variables used to extract the raster data env_variables = c("Annual_mean_temp", "Mean_diurnal_range", "Isothermality", "Temp_seasonality", "Max_temp_warm_month", "Min_temp_cold_month", "Temp_annual_range", "Mean_temp_wet_qu", "Mean_temp_dry_qu", "Mean_temp_warm_qu", "Mean_temp_cold_qu", "Annual_precip", "Precip_wet_month", "Precip_dry_month", "Precip_seasonality", "Precip_wet_qu", "Precip_dry_qu", "Precip_warm_qu", "Precip_col_qu") bioclim_variables = c('bio_01', 'bio_02', 'bio_03', 'bio_04', 'bio_05', 'bio_06', 'bio_07', 'bio_08', 'bio_09', 'bio_10', 'bio_11', ## Rainfall 'bio_12', 'bio_13', 'bio_14', 'bio_15', 'bio_16', 'bio_17', 'bio_18', 'bio_19') ## Names of the sdm data table --- sdm_table_vars <- c('searchTaxon', 'lon', 'lat', 'SOURCE', 'Annual_mean_temp', 'Mean_diurnal_range', 'Isothermality', 'Temp_seasonality', 'Max_temp_warm_month', 'Min_temp_cold_month', 'Temp_annual_range', 'Mean_temp_wet_qu', 'Mean_temp_dry_qu', 'Mean_temp_warm_qu', 'Mean_temp_cold_qu', 'Annual_precip', 'Precip_wet_month', 'Precip_dry_month', 'Precip_seasonality', 'Precip_wet_qu', 'Precip_dry_qu', 'Precip_warm_qu', 'Precip_col_qu') ## Names of the best 15 worldclim predictors ---- ## i.e. 'backwards selected' predictors bs_predictors <- c("Annual_mean_temp", "Mean_diurnal_range", "Isothermality", "Temp_seasonality", "Max_temp_warm_month", "Min_temp_cold_month", "Temp_annual_range", "Mean_temp_warm_qu", "Mean_temp_cold_qu", "Annual_precip", "Precip_wet_month", "Precip_dry_month", "Precip_seasonality", "Precip_wet_qu", "Precip_dry_qu") ## Just get the 6 models picked by CSIRO for Australia, for 2030, 2050 and 2070 ## See the publication for why we choose this scen_2030 = c("mc85bi30", "no85bi30", "ac85bi30", "cc85bi30", "gf85bi30", "hg85bi30") scen_2050 = c("mc85bi50", "no85bi50", "ac85bi50", "cc85bi50", "gf85bi50", "hg85bi50") scen_2070 = c("mc85bi70", "no85bi70", "ac85bi70", "cc85bi70", "gf85bi70", "hg85bi70") ## Make a list of SDM columns needed ---- results_columns = c("searchTaxon", ## From the ALA/ GBIF download code "Family", ## From Anthony Manea's spreadsheet, will be affected by taxonomy.... "Maxent_records", ## No. records used in the SDM "Aus_records", ## No. AUS records :: from the R workflow "AOO", ## Global Area of occurrence "KOP_count", ## Number of koppen zones each species is found in... "Number_var", ## No. maxent variables :: from Maxent code "Var_pcont", ## Maxent Variable with highest permutation importance "Per_cont", ## The permutaiton importance of that variable "Var_pimp", ## Maxent Variable with highest permutation importance "Perm_imp", ## The permutaiton importance of that variable "Iterations", ## No. iterations "Training_AUC", ## training AUC "Max_tss", ## Maximium True skill statistic "Number_background_points", ## No. background points "Logistic_threshold", "Omission_rate" ## Maxent threshold) ) ## List of SDM packages ---- sdmgen_packages <- c("ff", "things", "raster", "dismo", "rJava", "sp", "sf", "stars", "latticeExtra", "data.table", "devtools", "Hmisc", "roxygen2", "rgdal", "readxl", "rgeos", "rgbif", "gdalUtils", "rmaxent", "readr", "plyr", "dplyr", "tidyr", "readr", "rnaturalearth", "rasterVis", "RColorBrewer", "latticeExtra", "parallel", "stringr", "Taxonstand", "terra", "textclean", "CoordinateCleaner", "gsubfn", "PerformanceAnalytics", "utf8", "rvest", "magrittr", "devtools", "ggplot2", "reshape2", "rmarkdown", "flexdashboard", "shiny", "ENMeval", "tibble", "ncdf4", "Cairo", "taxonlookup", "kgc", "betareg", "gridExtra", "grid", "lattice", "ConR", "writexl", "sf", "ggmap", "DataCombine", "exactextractr", "mgcv", "doSNOW", "tidyverse", "ggpubr", "GGally", "maptools")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.