R/MEDIPS.functions.R

##########
#Function
##########
##Input:	Parameters that specify the reference genome and targeted window size.
##Param:	supersize_chr, no_chr_windows_, chromosomes, chr_lengths, window_size
##Output:	GRange object
##Modified:	11/10/2011
##Author:	Joern Dietrich
matNnotNA <- function(x,dimension=c("row"=1,"col"=2)[1]){
	#returns number of non-na-values per row/col
	return(apply(X=!is.na(x),MARGIN=dimension,FUN=sum))
}

## ---------------------------------------------------
##########
#Function
##########
##Input:	Parameters that specify the reference genome and targeted window size.
##Param:	supersize_chr, no_chr_windows_, chromosomes, chr_lengths, window_size
##Output:	GRange object
##Modified:	11/10/2011
##Author:	Joern Dietrich
matMin <- function(x,dimension=c("row"=1,"col"=2)[1]){
	return(apply(X=x,MARGIN=dimension,FUN=min))
}
matDiff<-function(x,groups,dimension=c("row"=1,"col"=2)[1]){
	ugr <- sort(unique(groups))
	f0 <- groups==ugr[1] & !is.na(groups)
	f1 <- groups==ugr[2] & !is.na(groups)
	if(dimension==1){	
	  res<-x[,f0,drop=FALSE]-x[,f1,drop=FALSE]
	}else{
	  res<-x[f0,,drop=FALSE]-x[f1,,drop=FALSE]
	}
	return(res)
}

## ---------------------------------------------------
matMax <- function(x,dimension=c("row"=1,"col"=2)[1]){
	return(apply(X=x,MARGIN=dimension,FUN=max))
}
## ---------------------------------------------------
##########
#Function
##########
##Input:	Parameters that specify the reference genome and targeted window size.
##Param:	supersize_chr, no_chr_windows_, chromosomes, chr_lengths, window_size
##Output:	GRange object
##Modified:	11/10/2011
##Author:	Joern Dietrich
matMean <- function(x,dimension=c("row"=1,"col"=2)[1]){
	return(apply(X=x,MARGIN=dimension,FUN=mean))
}
## ---------------------------------------------------
##########
#Function
##########
##Input:	Parameters that specify the reference genome and targeted window size.
##Param:	supersize_chr, no_chr_windows_, chromosomes, chr_lengths, window_size
##Output:	GRange object
##Modified:	11/10/2011
##Author:	Joern Dietrich
matSd <- function(x,dimension=c("row"=1,"col"=2)[1]){
	return(apply(X=x,MARGIN=dimension,FUN=sd))
}
## ---------------------------------------------------
##########
#Function
##########
##Input:	Parameters that specify the reference genome and targeted window size.
##Param:	supersize_chr, no_chr_windows_, chromosomes, chr_lengths, window_size
##Output:	GRange object
##Modified:	11/10/2011
##Author:	Joern Dietrich
matTtest <- function(x,groups,dimension=c("row"=1,"col"=2)[1],alternative = c("two.sided", "less", "greater")[1],paired=c(FALSE,TRUE)[1]){
	#cat("modified version!\n")
	if(length(groups)!= dim(x)[c(2,1)[dimension]]){
		stop(paste("Length of groups vector is not identical to dimension",c(2,1)[dimension],"  of x."))
	}
	if(paired){
		if(length(f0)!=length(f1)){
			stop("not all arguments have the same length")
		}
		vdiff<-matDiff(x,groups)
#######################das habe ich auch geaendert, aber paired ttest wird ja eh nicht aufgerufen
		n=apply(!is.na(vdiff),dimension,sum)
#######################
		tstat=matMean(vdiff)/sqrt(apply(X=x,MARGIN=dimension,FUN=var)/n)
		df <- n -1
	}else{
		ugr <- sort(unique(groups))
		if(length(ugr)!=2){
			stop(paste("There need to be exactly 2 group identifiers in groups (not counting NAs) but",
							length(ugr),"were provided."))
		}
		f0 <- groups==ugr[1] & !is.na(groups)
		f1 <- groups==ugr[2] & !is.na(groups)
		sd0<- apply(x[,f0],dimension,sd)
		sd1<- apply(x[,f1],dimension,sd)
		na0<-apply(!is.na(x[,f0]),dimension,sum)
		na1=apply(!is.na(x[,f1]),dimension,sum)
		tstat <- (apply(x[,f0],dimension,mean)-apply(x[,f1],dimension,mean)) / sqrt( sd0^2/na0 + sd1^2/na1)
		df <- na0 + na1 -2
		if(any(sd0 != sd1)){
			fi     <- sd0 != sd1 			
			err0   <- sd0[fi]/sqrt(na0[fi])
			err1   <- sd1[fi]/sqrt(na1[fi])		
			df[fi] <- (err0^2+err1^2)^2/(err0^4/(na0-1) + err1^4/(na1-1))		
		}
	}
	if (alternative == "less") {
		pval <- pt(tstat, df)
	}
	else if (alternative == "greater") {
		pval <- pt(tstat, df, lower.tail = FALSE)
	}
	else {
		pval  <- 2 * pt(-abs(tstat), df)
	}
	return(data.frame(p.value=pval,df=df, t.statistics=tstat))
################da die ganzen werte eh nicht ausgewertet werden, könnte man auch statdessen nur pval zurückgeben
	#return(pval)

}
HPCBio/MEDIPS-BioC documentation built on May 30, 2019, 12:44 p.m.