Discrete: Discrete distributions

Description Usage Arguments Details Value Note Author(s) References Examples

Description

Plot pmf/cdf, calculate mean/variance/standard deviation, and compute probabilities for various discrete distributions

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# For use-defined discrete distribution
discrete.plotpdf(x,fx)
discrete.plotcdf(x,fx)
discrete.summary(x,fx,plotpdf=c("TRUE","FALSE"), plotcdf=c("TRUE","FALSE"))
discrete.prob(x,fx,lb)
discrete.prob(x,fx,lb,ub,inclusive=c("none","left","right","both"))

# Discrete Uniform Distribution
duniform.summary(range,plotpdf=c("TRUE","FALSE"), plotcdf=c("TRUE","FALSE")))
duniform.prob(range,lb)
duniform.prob(range,lb,ub,inclusive=c("none","left","right","both"))

# Binomial distribution
binomial.summary(n,p,plotpdf=c("TRUE","FALSE"), plotcdf=c("TRUE","FALSE")))
binomial.prob(n,p,lb)
binomial.prob(n,p,lb,ub,inclusive=c("none","left","right","both"))

# Geometric distribution
geometric.summary(p,plotpdf=c("TRUE","FALSE"), plotcdf=c("TRUE","FALSE")))
geometric.prob(p,lb)
geometric.prob(p,lb,ub,inclusive=c("none","left","right","both"))

# Negative Binomial distribution
negbinom.summary(r,p,plotpdf=c("TRUE","FALSE"), plotcdf=c("TRUE","FALSE")))
negbinom.prob(r,p,lb)
negbinom.prob(r,p,lb,ub,inclusive=c("none","left","right","both"))

# Hypergeometric distribution
hypergeo.summary(N,K,n,plotpdf=c("TRUE","FALSE"), plotcdf=c("TRUE","FALSE")))
hypergeo.prob(N,K,n,lb)
hypergeo.prob(N,K,n,lb,ub,inclusive=c("none","left","right","both"))

# Poisson distribution
poisson.summary(lambda,L,plotpdf=c("TRUE","FALSE"), plotcdf=c("TRUE","FALSE")))
poisson.prob(lambda,L,lb)
poisson.prob(lambda,L,lb,ub,inclusive=c("none","left","right","both"))

Arguments

x

possible values of a user defined discrete random variable

fx

probabilities of X=x, the order of entries in fx must matches the order of entries in x.

plotpdf

TRUE or FALSE, if TRUE, it plots the pmf

plotcdf

TRUE or FALSE, if TRUE, it polts the cdf

lb,ub

lower bound (lb) and upper bound (ub) in a probability statement; lb could be -Inf; ub could be Inf; ub cannot be less than lb

inclusive

"none": lb<X<ub; "left": lb<=X<ub; "right": lb<X<=ub; "both": lb<=X<=ub

Range

contains all possible values of a discrete uniform random variable

p

parameter p of a Binomial distribution/Geometric distribution/Negtive Binomial distribution

n

parameter n of a Binomial distribution

r

parameter r of a negative Binomial distribution

N,K,n

parameters N, K, and n of a hypergeometric distribution

lambda,L

parameters lambda and L of a Poisson distribution. Default: L=1

Details

Plot the probability mass function (pmf) and the cumulative distribution function (cdf) and calculate probability, mean, variable and standard deviation, and compute probabilities of various discrete distributions (a self-defined discrete distribution, discrete uniform distribution, binomial distribution, geometric distribution, negative binomial distribution, hypergeometric distribution, and Poisson distribution).

Value

discrete.plotpdf

a figure of the pmf of the user-defined discrete distribution

discrete.plotcdf

a figure of the cdf of the user-defined discrete distribution

discrete.summary

a list of the mean, variance, and standard deviation of the user-defined discrete distribution, plot of the pmf/cdf or not

discrete.prob

probability of X between lb and ub based on the user-defined discrete distribution

duniform.summary

a list of the mean, variance, and standard deviation of a discrete uniform distribution, plot of the pmf/cdf or not

duniform.prob

probability of X between lb and ub based on a uniform distribution

binomial.summary

a list of the mean, variance, and standard deviation of a binomial distribution, plot of the pmf/cdf or not

binomial.prob

probability of X between lb and ub based on a binomial distribution

geometric.summary

a list of the mean, variance, and standard deviation of a geometric distribution, plot of the pmf/cdf or not

geometric.prob

probability of X between lb and ub based on a geometric distribution

negbinom.summary

a list of the mean, variance, and standard deviation of a negative binomial distribution, plot of the pmf/cdf or not

negbinom.prob

probability of X between lb and ub based on a negative binomial distribution

hypergeo.summary

a list of the mean, variance, and standard deviation of a hypergeometric distribution, plot of the pmf/cdf or not

hypergeo.prob

probability of X between lb and ub based on a hypergeometric distribution

poisson.summary

a list of the mean, variance, and standard deviation of a Poisson distribution, plot of the pmf/cdf or not

poisson.prob

probability of X between lb and ub based on a Poisson distribution

Note

deweiwang@stat.sc.edu

Author(s)

Dewei Wang

References

Chapter 3 of the textbook "Applied Statistics and Probability for Engineers" 7th edition

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
x=c(0,1,2,3,4);fx=c(0.6561,0.2916,0.0486,0.0036,0.0001);

discrete.summary(x,fx)
discrete.summary(x,fx,plotpdf=FALSE,plotcdf=TRUE)
discrete.summary(x,fx,plotpdf=TRUE,plotcdf=FALSE)

discrete.prob(x,fx,2) #P(X=2)

discrete.prob(x,fx,2,4,inclusive="none") #P(2<X<4)
discrete.prob(x,fx,2,4,inclusive="left") #P(2<=X<4)
discrete.prob(x,fx,2,4,inclusive="right") #P(2<X<=4)
discrete.prob(x,fx,2,4,inclusive="both") #P(2<=X<=4)

discrete.prob(x,fx,2,Inf,inclusive="none") #P(2<X)
discrete.prob(x,fx,2,Inf,inclusive="left") #P(2<=X)
discrete.prob(x,fx,2,Inf,inclusive="right") #P(2<X)
discrete.prob(x,fx,2,Inf,inclusive="both") #P(2<=X)

discrete.prob(x,fx,-Inf,4,inclusive="none") #P(X<4)
discrete.prob(x,fx,-Inf,4,inclusive="left") #P(X<4)
discrete.prob(x,fx,-Inf,4,inclusive="right") #P(X<=4)
discrete.prob(x,fx,-Inf,4,inclusive="both") #P(X<=4)

#X~Discrete Uniform(1,2,4,5,8,10)
range=c(1,2,4,5,8,10)
duniform.summary(range)
duniform.prob(range,2) #P(X=2)
duniform.prob(range,2,4,inclusive="left") #P(2<=X<4)

#X~Binomial(n=5,p=0.3)
binomial.summary(5,0.3)
binomial.prob(5,0.3,2) #P(X=2)
binomial.prob(5,0.3,2,4,inclusive="left") #P(2<=X<4)

#X~Geometric(p=0.3)
geometric.summary(0.3)
geometric.prob(0.3,2) #P(X=2)
geometric.prob(0.3,2,4,inclusive="left") #P(2<=X<4)

#X~Negative Binomial(r=3,p=0.3)
negbinom.summary(3,0.3)
negbinom.prob(3,0.3,5) #P(X=5)
negbinom.prob(3,0.3,5,7,inclusive="left") #P(5<=X<7)

#X~Hypergeometric(N=300,K=100,n=4)
hypergeo.summary(300,100,4)
hypergeo.prob(300,100,4,2) #P(X=2)
hypergeo.prob(300,100,4,2,4,inclusive="left") #P(2<=X<4)

#X~Poisson(lambda=2.3,L=5)
poisson.summary(2.3,5)
poisson.prob(2.3,5,10) #P(X=10)
poisson.prob(2.3,5,1,Inf,inclusive="left") #P(1<=X)

Harrindy/StatEngine documentation built on Nov. 19, 2021, 1:10 p.m.