Description Usage Arguments Details Value Note Author(s) References Examples
Inferences for linear regression: confidence intervals and hypthesis testing on regression coefficients, confidence interval on the mean response at a given x and prediction interval on a future observation at a given x, Partial F-test, model adequacy checking.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | # fit must be an lm object; e.g., fit=lm(y~x).
lm.est(fit)
# based on the fit, compute CIs and tests on betas
lm.coef.CI(fit,level=0.95)
# The default value of hypo.beta is zero
lm.coef.test(fit,alpha=0.05,H1="two",hypo.beta=?)
#Partial F-test,
#fit.H0 is the lm object using the null model
#fit.ALL is the lm object using the full model
lm.partialFtest(fit.H0=lmH0,fit.ALL=lmALL,alpha=0.05)
# Model Adequacy checking
lm.modelcheck(fit)
# fit must be an lm object. VIFs are also printed.
|
fit |
an lm object |
level |
the confidence level |
alpha |
the significance level |
hypo.beta |
the hypothesized beta value that about to be tested |
fit.H0, fit.ALL |
the null model and full model in the partial F-test |
Inferences for linear regression: confidence intervals and hypthesis testing on regression coefficients, confidence interval on the mean response at a given x and prediction interval on a future observation at a given x, Partial F-test, model adequacy checking.
lm.est |
the least squares estimates |
interval |
As long as the function has "interval", the outcome are confidence intervals. |
test |
As long as the function has "test", it conduct the hypothesis testing. |
lm.modelcheck |
residual analysis and VIFs |
deweiwang@stat.sc.edu
Dewei Wang
Chapters 11-12 of the textbook "Applied Statistics and Probability for Engineers" 7th edition
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | Example1=read.csv("https://raw.githubusercontent.com/Harrindy/StatEngine/master/Data/HydrocarbonPurity.csv")
x=Example1$HydrocarbonLevels
y=Example1$Purity
fit=lm(y~x)
lm.est(fit)
summary(fit)
lm.coef.interval(fit,level=0.95)
predict.lm(fit,new=data.frame(x=1),interval="confidence")
predict.lm(fit,new=data.frame(x=1),interval="prediction")
Example2=read.csv("https://raw.githubusercontent.com/Harrindy/StatEngine/master/Data/WireBond.csv")
head(Example2,2)
y=Example2$PullStrength
x1=Example2$WireLength
x2=Example2$DieHeight
fit=lm(y~x1+x2)
summary(fit)
lm.coef.interval(fit,level=0.95)
lm.coef.test(fit,alpha=0.05,H1="two")
predict.lm(fit,new=data.frame(x1=8,x2=275),interval="confidence")
predict.lm(fit,new=data.frame(x1=8,x2=275),interval="prediction")
data.summary(fit$residuals)
vif(fit)
lm.modelcheck(fit)
x3=x1^2
x4=x2^2
lmH0=lm(y~x1+x2)
lmALL=lm(y~x1+x2+x3+x4)
lm.partialFtest(fit.H0=lmH0,fit.ALL=lmALL,alpha=0.05)
summary(lm(y~x1+x2+x3))
summary(lm(y~x1+x2+x4))
summary(lm(y~x1+x2+x3+x4))
Example3=read.csv("https://raw.githubusercontent.com/Harrindy/StatEngine/master/Data/AirplaneSidewallPanels.csv")
head(Example3,2)
y=Example3$cost
x=Example3$lotsize
plot(x,y)
fit=lm(y~x)
lines(x,fit$fitted.values)
x2=x^2
fit.quad=lm(y~x+x2)
lines(x,fit.quad$fitted.values,col="blue")
summary(fit)
summary(fit.quad)
Example4=read.csv("https://raw.githubusercontent.com/Harrindy/StatEngine/master/Data/SurfaceFinishData.csv")
head(Example4,2)
plot(Example4)
y=Example4$SurfaceFinish
x1=Example4$RPM
x2=Example4$TypeofCuttingTool
fit=lm(y~x1+x2)
summary(fit)
par(mar=c(4,4,.1,.1))
par(mfrow=c(1,2))
plot(x1[x2==0],y[x2==0])
lines(x1[x2==0],fit$fitted.values[x2==0])
plot(x1[x2==1],y[x2==1])
lines(x1[x2==1],fit$fitted.values[x2==1])
x3=x1*x2
fit2=lm(y~x1+x2+x3)
summary(fit2)
par(mfrow=c(1,1))
plot(x1,y)
lines(x1[x2==0],fit$fitted.values[x2==0])
lines(x1[x2==1],fit$fitted.values[x2==1])
lines(x1[x2==0],fit2$fitted.values[x2==0],col="blue")
lines(x1[x2==1],fit2$fitted.values[x2==1],col="blue")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.