Description Usage Arguments Details Value Note Author(s) References Examples
Compute confidence intervals on the population mean, population variance, and population proportion. In addition, it computes prediction interval for a single future observation from a normal distribution.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | #CI for pupulation mean of a normal distribution when the population variance is known:
Zinterval(level,sigma,sample) # if sample available
Zinterval(level,sigma,n,barx) # if stats are provided
# Choice of sample size for estimating the population mean when error is specified
sample.size.Zinterval(level,sigma,E)
#CI for pupulation mean when the population variance is unknown and the distribution is normal
#or when the sample size is smaller than 25:
Tinterval(level,sample) # if sample available
Tinterval(level,n,barx,s) # if stats are provided
#Large-sample CI for pupulation mean:
AZinterval(level,sample) # if sample available
AZinterval(level,n,barx,s) # if stats are provided
#CI for pupulation variance (or standard deviation) of a normal distribution:
Chi2interval(level,sample) # if sample available
Chi2interval(level,n,s) # if stats are provided
#Large-sample CI for a pupulation proportion:
Propinterval(level,n,X)
# Choice of sample size for estimating a population proportion when error is specified
sample.size.Propinterval(level,ini.p,E) # using an intial guess
sample.size.Propinterval(level,ini.p=0.5,E) # using the conservative apporach
# Prediction interval of a single future observation form a normal distribution:
Predinterval(level,sample) # if sample available
Predinterval(level,n,barx,s) # if stats are provided
|
level |
the confidence level |
sample |
a vector of the observed sample |
sigma |
the known population standard deviation |
s |
the observed sample standard deviation |
barx |
the observed sample mean |
n |
the sample size |
X |
number of observations belongs to a class of interest |
E |
specified error in sample size calculation |
ini.p |
A initial estimate of the populatin proportion. Default is 0.5 which corresponds to the conservative approach |
df |
the degrees of freedom of a t or chi.square distribution |
q |
a quantile value |
Compute CIs for the population mean, population variance, and population proportaion and PI for a single future observation from a normal distribution.
interval |
As long as the function has "interval", the outcome contains a two-sided CI (or PI) and the two one-sided confidence bounds. |
sample.size |
As long as the function has "sample.size", the outcome is the minimum sample size required to control the error to be no larger than E. |
t.quantile |
quantile of a t distribution |
Chi2.quantile |
quantile of a chi.square distribution |
deweiwang@stat.sc.edu
Dewei Wang
Chapter 8 of the textbook "Applied Statistics and Probability for Engineers" 7th edition
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | #Zinterval
#must include the = sign
x=c(64.1, 64.7, 64.5, 64.6, 64.5, 64.3, 64.6, 64.8, 64.2, 64.3)
Zinterval(level=0.95,sigma=1,sample=x)
Zinterval(level=0.99,sigma=1,sample=x)
sample.size.Zinterval(E=0.5,sigma=1,level=0.95)
# Using stats, must include the = sign
Zinterval(level=0.95,sigma=2,n=9,barx=98)
#Tinterval
#must include the = sign
Tinterval(level=0.95,n=10,barx=1000,s=20)
Tinterval(level=0.95,n=25,barx=1000,s=20)
Tinterval(level=0.99,n=10,barx=1000,s=20)
Tinterval(level=0.99,n=25,barx=1000,s=20)
#Large-sample Zinterval
#must include the = sign
x=scan("https://raw.githubusercontent.com/Harrindy/StatEngine/master/Data/Mercury.csv")
AZinterval(level=0.95,sample=x)
#Chi.square interval for variance/standard deviation
#must include the = sign
Chi2interval(level=0.95,n=20,s=0.01532)
#CIs for a porpulation proportion
#must include the = sign
Propinterval(level=0.95,n=85,X=10)
sample.size.Propinterval(level=0.95,ini.p=0.12,E=0.05)
sample.size.Propinterval(level=0.95,ini.p=0.5,E=0.05)
#Prediction interval for normal distribution
#must include the = sign
x=c(19.8, 10.1, 14.9, 7.5, 15.4, 15.4, 15.4, 18.5, 7.9, 12.7, 11.9, 11.4, 11.4,
14.1, 17.6, 16.7, 15.8, 19.5, 8.8, 13.6, 11.9, 11.4)
Tinterval(level=0.95,sample=x)
Predinterval(level=0.95,sample=x)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.