Description Usage Arguments Details Author(s) References See Also Examples
Performs a normalization plate by plate on each of the slide seperately.
For details on plate-wise normalization see [1] and for details
on intensity dependent normalization see [2].
Note that
the data in the object is replaced with the new normalized data and
the old data is removed. To keep the old data, make a copy of the
object before normalizing by using clone(ma)
, see
clone.Object
and example below.
1 2 | ## S3 method for class 'MicroarrayData'
normalizePlatewise(this, field, method="constant", slides=NULL, ...)
|
field |
The data field to be normalized. |
method |
The normalization method to be used. If |
slides |
Slides to be included in the normalization. If |
... |
Other arguments accepted by underlying normalization methods. |
The data will be normalize within each plate group individually by either a) assuming same shift and scale for whole plate i) shifting the data to have median/mean zero. ii) rescale the data so all the groups have the same median absolute deviation (MAD) or standard deviation (sd) or by b) assuming intensity dependent effects. For more details see [1].
Henrik Bengtsson (http://www.braju.com/R/)
[1]Henrik Bengtsson, Plate Effects in cDNA microarray data, Matemathical Statistics, Centre for Matematical Sciences, Lund University, Sweden. Manuscript, 2002. \item[2]S. Dudoit, Y. H. Yang, M. J. Callow, and T. P. Speed. Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments (Statistics, UC Berkeley, Tech Report 578). URL: http://www.stat.berkeley.edu/users/terry/zarray/Html/papersindex.html
For other within-slide normalization see MAData.normalizeWithinSlide
.
For across-slide normalization see MAData.normalizeAcrossSlides
.
For more information see MicroarrayData
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | # The option 'dataset' is used to annotate plots.
options(dataset="sma:MouseArray")
SMA$loadData("mouse.data")
layout <- Layout$read("MouseArray.Layout.dat", path=system.file("data-ex", package="aroma"))
raw <- RawData(mouse.data, layout=layout)
ma <- getSignal(raw)
# Scaled intensity normalization print-tip by print-tip
ma.norm1 <- clone(ma)
normalizeWithinSlide(ma.norm1, method="s")
# Intensity normalization plate by plate
ma.norm2 <- clone(ma.norm1)
normalizePlatewise(ma.norm2, field="M", method="A")
# Plot data before and after normalization.
layout(matrix(1:9, ncol=3, byrow=TRUE))
plot(ma)
plotSpatial(ma)
plotPrintorder(ma)
plot(ma.norm1)
plotSpatial(ma.norm1)
plotPrintorder(ma.norm1)
plot(ma.norm2)
plotSpatial(ma.norm2)
plotPrintorder(ma.norm2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.