##' Calculate sample size for detecting differential transmission with uncertainty bounds
##'
##' @description
##' This function assumes you
##' want to correct for imbalance, if not there is a closed form solution
##' for the estimated sample size that does not include uncertainty bounds.
##' (see [`relR_samplesize`]).
##'
##' @template R_a
##' @template R_b
##' @template p_a
##' @template N
##' @template alpha
##' @template alternative
##' @template power
##' @template sensitivity
##' @template specificity
##' @template overdispersion
##' @param nsims The number of inner simulations run per estimate.
##' Default: 10000
##' @param uncertainty_percent The percent of the uncertainty interval.
##' Default: .95
##' @param B The number of outer simulations run to estimate the uncertainty.
##' Default: 1000
##'
##' @return A vector with three quantities:
##' * sample size: Sample size needed achieve desired type I and II error rates
##' under assumptions. Will return NA and throw a warning if impossible.
##' * lower bound: The lower bound of an uncertainty interval
##' * upper bound: The upper bound of an uncertainty interval
##' @export
relR_samplesize_ci <- function(R_a,
R_b,
p_a,
N,
alpha = 0.05,
alternative = c("two_sided", "less", "greater"),
power = 0.8,
sensitivity = 1,
specificity = 1,
overdispersion = NULL,
nsims = 1000,
uncertainty_percent = 0.95,
B = 1000) {
rlang::check_installed("purrr", reason = "for `relR_samplesize_ci()`")
m <- purrr::map_dbl(
1:B,
~ relR_samplesize_simsolve(
R_a = R_a,
R_b = R_b,
p_a = p_a,
N = N,
alpha = alpha,
alternative = alternative,
power = power,
sensitivity = sensitivity,
specificity = specificity,
overdispersion = overdispersion,
nsims = nsims
)
)
return(
c(
"sample size" = round(mean(m), 1),
"lower bound" = stats::quantile(m, (1 - uncertainty_percent) / 2),
"upper bound" = stats::quantile(m, 1 - ((
1 - uncertainty_percent
) / 2))
)
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.