#' Predict Method for Tropical Support Vector Machines
#'
#' Predicts values based upon a model trained by \code{tropsvm}.
#'
#' @importFrom RcppAlgos comboGeneral
#'
#' @param object a fitted \code{tropsvm} object.
#' @param newx a data matrix, of dimension nobs x nvars used as testing data.
#' @param \dots Not used. Other arguments to predict.
#'
#' @return A vector of predicted values of a vector of labels.
#'
#'
#' @seealso \code{summary}, \code{coef} and the \code{tropsvm} function.
#'
#' @examples
#'
#' # data generation
#' library(Rfast)
#' e <- 100
#' n <- 10
#' N <- 10
#' s <- 5
#' x <- rbind(
#' rmvnorm(n, mu = c(5, -5, rep(0, e - 2)), sigma = diag(s, e)),
#' rmvnorm(n, mu = c(-5, 5, rep(0, e - 2)), sigma = diag(s, e))
#' )
#' y <- as.factor(c(rep(1, n), rep(2, n)))
#' newx <- rbind(
#' rmvnorm(N, mu = c(5, -5, rep(0, e - 2)), sigma = diag(s, e)),
#' rmvnorm(N, mu = c(-5, 5, rep(0, e - 2)), sigma = diag(s, e))
#' )
#' newy <- as.factor(rep(c(1, 2), each = N))
#'
#' # train the tropical svm
#' tropsvm_fit <- tropsvm(x, y, auto.assignment = TRUE, ind = 1)
#'
#' # test with new data
#' pred <- predict(tropsvm_fit, newx)
#'
#' # check with accuracy
#' table(pred, newy)
#'
#' # compute testing accuracy
#' sum(pred == newy) / length(newy)
#' @method predict tropsvm
#' @export
#' @export predict.tropsvm
predict.tropsvm <- function(object, newx, ...) {
# object = svmmodel;
classes <- object$`levels`
best_method <- object$`index`
omega <- object$apex
best_assignment <- object$assignment[c(1, 3, 2, 4)]
ip <- best_assignment[1]
jp <- best_assignment[2]
iq <- best_assignment[3]
jq <- best_assignment[4]
if (length(unique(best_assignment)) == 2) {
shifted_tst_data <- eachrow(newx, omega, "+")
classification <- rowMaxs(shifted_tst_data)
classification[classification == ip] <- classes[1]
classification[classification == iq] <- classes[2]
as.factor(classification)
} else {
if (length(unique(best_assignment)) == 4) {
all_method_ind <- comboGeneral(8, 4)
P_base <- matrix(c(
1, 0, 0, 0,
0, 1, 0, 0,
1, 1, 0, 0,
1, 1, 1, 1
), ncol = 4, byrow = T)
Q_base <- matrix(c(
0, 0, 1, 0,
0, 0, 0, 1,
0, 0, 1, 1,
0, 0, 0, 0
), ncol = 4, byrow = T)
PQ_com <- matrix(c(
1, 0, 1, 0,
1, 0, 0, 1,
0, 1, 1, 0,
0, 1, 0, 1,
1, 1, 1, 0,
1, 1, 0, 1,
1, 0, 1, 1,
0, 1, 1, 1
), ncol = 4, byrow = T)
}
if (length(unique(best_assignment)) == 3) {
all_method_ind <- comboGeneral(6, 3)
P_base <- c(1, 0, 0)
Q_base <- c(0, 0, 1)
PQ_com <- matrix(c(
0, 1, 0,
1, 1, 0,
1, 0, 1,
0, 1, 1,
1, 1, 1,
0, 0, 0
), ncol = 3, byrow = T)
if (ip == jq) {
PQ_com <- PQ_com[, c(1, 2, 3, 1)]
P_base <- c(1, 0, 0, 1)
Q_base <- c(0, 0, 1, 0)
}
if (iq == jp) {
PQ_com <- PQ_com[, c(1, 2, 2, 3)]
P_base <- c(1, 0, 0, 0)
Q_base <- c(0, 1, 1, 0)
}
if (jp == jq) {
PQ_com <- PQ_com[, c(1, 2, 3, 2)]
P_base <- c(1, 0, 0, 0)
Q_base <- c(0, 0, 1, 0)
}
}
colnames(PQ_com) <- c("ip", "jp", "iq", "jq")
classification_method <- rbind(
rbind(P_base, PQ_com[all_method_ind[best_method, ], ]),
rbind(Q_base, PQ_com[-all_method_ind[best_method, ], ])
)
shifted_tst_data <- eachrow(newx, omega, "+")
diff <- eachrow(t(shifted_tst_data), rowMaxs(shifted_tst_data, T), oper = "-")
classification <- lapply(lapply(seq_len(ncol(diff)), function(i) diff[, i]), function(x) {
which(abs(x) < 1e-10)
})
classification <- sapply(classification, function(x) {
which(colSums(abs(t(classification_method) - best_assignment %in% x)) == 0)
})
classification_temp = classification
classification[classification_temp <= nrow(classification_method) / 2] <- levels(classes)[1]
classification[classification_temp > nrow(classification_method) / 2] <- levels(classes)[2]
names(classification) = NULL
as.factor(classification)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.