# N Green, UCL 7-12-2020 --------------------------------------------------
library(dplyr)
library(purrr)
## settings
bugs_params <-
list(
PROG = "openBugs",
N.BURNIN = 10,#00,
N.SIMS = 150,#0,
N.CHAINS = 2,
N.THIN = 1,
PAUSE = TRUE)
RUN <- TRUE
DIAGNOSTICS <- TRUE
saveplot_fn <- customSavePlot()
## run analysis
analyses_params <-
read.csv(
here::here("raw_data", "AnalysisList.csv"),
as.is = TRUE,
na.strings = c("NR", "NA")) %>%
filter(Endpoint_type == "Surv") %>%
dplyr::rename(name = Analysis_name,
type = Analysis_Type)
# for (a in 1:nrow(analysis)) {
a <- 1
analysis <- analyses_params[a, ]
# fixed effects RANDOM=FALSE, random effects RANDOM=TRUE
RANDOM <- analysis$Model_effects == "RE"
REFTX <- analysis$REFTX
# indicator for availability of binary endpoint data
is_bin <- analysis$BinData == "YES"
# indicator for availability of median endpoint data
is_med <- analysis$MedData == "YES"
#}
# read in datasets
filename <- paste0(here::here("raw_data"), "/survdata_", analysis$Endpoint, "_")
subData <-
read.csv(paste0(file_name, analysis$type, ".csv"),
header = TRUE,
as.is = TRUE)
if (is_bin) {
survDataBin <-
read.csv(paste0(file_name, "bin.csv"),
header = TRUE,
as.is = TRUE)
}
if (is_med) {
survDataMed <-
read.csv(paste0(file_name, "med.csv"),
header = TRUE,
as.is = TRUE) %>%
mutate(medR = floor(medR))
}
nma_res <-
setupData(subData = subData,
survDataMed = survDataMed,
survDataBin = survDataBin,
is_random = RANDOM,
refTx = REFTX) %>%
NMA(dat = .,
bugs_params = bugs_params,
effectParam = "beta",
modelParams = "totresdev",
label = analysis$name,
endpoint = analysis$Endpoint,
random = RANDOM)
#}
#########
# plots #
#########
library(sna)
dat <-
setupData(subData = subData,
survDataMed = survDataMed,
survDataBin = survDataBin,
is_random = RANDOM,
refTx = REFTX)
plotNetwork(dat)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.