# --------------------------------------------------------------------------------- #
# -------------------- moretrees initial values function -------------------------- #
# --------------------------------------------------------------------------------- #
#' Here's a brief description.
#' \code{moretrees_init_rand} Randomly generates starting values for moretrees
#' models. Not recommended if the model is converging slowly!
#'
#' @export
#' @useDynLib moretrees
#'
#' @section Model Description:
#' Describe MOReTreeS model and all parameters here.
#'
#' @param dsgn Design list generated by moretrees_design_tree()
#' @param xxT Computed from exposure matrix X
#' @param wwT Computed from covariate matrix W
#' @param update_hyper Update hyperparameters? Default = TRUE.
#' @param hyper_fixed Fixed values of hyperparameters to use if update_hyper = FALSE.
#' If family = "bernoulli", this should be a list including the following elements:
#' tau (prior variance for sparse node coefficients)
#' rho (prior node selection probability for sparse node coefficients)
#' omega (prior variance for non-sparse node coefficients)
#' If family = "gaussian", in addition to the above, the list should also include:
#' sigma2 (variance of residuals)
#' @param hyper_random_init If update_hyper = TRUE, this is a list containing the
#' maximum values of the hyperparameters. Each hyperparameter will be initialised
#' uniformly at random between 0 and the maximum values given by the list elements
#' below. If multiple random restarts are being used, it is recommended
#' to use a large range for these initial values so that the parameter space
#' can be more effectively explored. The list contains the following elements:
#' tau_max (maxmimum of prior sparse node variance)
#' omega_max (maximum of prior non-sparse node variance)
#' sigma2_max (maximum of residual error variance--- for gaussian data only)
#' @param vi_random_init A list with parameters that determine the distributions from
#' which the initial VI parameters will be randomly chosen. All parameters will be randomly
#' selected from independent normal distributions with the standard deviations given by
#' the list elements below. If multiple random restarts are being used, it is recommended
#' to use large standard deviations for these initial values so that the parameter space
#' can be more effectively explored. The list contains the following elements:
#' mu_sd (standard deviation for posterior means of sparse node coefficients)
#' delta_sd (standard deviation for posterior means of non-sparse node coefficients)
#' xi_sd (standard deviation for auxilliary parameters xi--- for bernoulli data only)
#' @return A list containing starting values
#' @examples
#' @family MOReTreeS functions
moretrees_init_rand <- function(X, W, y,
outcomes_units,
outcomes_nodes,
ancestors,
xxT, wwT,
initial_values,
update_hyper,
hyper_fixed,
vi_random_init,
hyper_random_init) {
n <- length(y)
m <- ncol(W)
p <- length(unique(unlist(ancestors)))
pL <- length(ancestors)
K <- ncol(X)
eta <- abs(rnorm(n, mean = 0, sd = vi_random_init$eta_sd))
g_eta <- gfun(eta)
if (update_hyper) {
# If hyperparameters will be updated, randomly initialise them
hyperparams <- list(omega = runif(1, 0, hyper_random_init$omega_max),
tau = runif(1, 0, hyper_random_init$tau_max))
} else {
# Otherwise, use fixed values
hyperparams <- hyper_fixed
}
if (m == 0) {
hyperparams$omega <- 1
}
hyperparams$eta <- eta
hyperparams$g_eta <- g_eta
# Variational parameter initial values
xxT_g_eta <- lapply(X = outcomes_units, FUN = xxT_g_eta_fun,
xxT = xxT, g_eta = g_eta, K = K)
Sigma_inv <- lapply(X = outcomes_nodes,
FUN = function(outcomes, x, K, tau) 2 * Reduce(`+`, x[outcomes]) +
diag(1 / tau, nrow = K),
x = xxT_g_eta,
K = K,
tau = hyperparams$tau)
Sigma <- lapply(Sigma_inv, solve)
Sigma_det <- sapply(Sigma, det)
mu <- lapply(X = 1:p, FUN = function(i) matrix(rnorm(K), ncol = 1))
prob <- runif(p, 0 , 1)
a_rho <- 1 + sum(prob) # need to initialise a_rho and b_rho using VI updates
b_rho <- 1 + p - sum(prob) # so that terms cancel in ELBO.
# otherwise first ELBO will be wrong
tau_t <- rep(hyperparams$tau, p)
delta <- lapply(X = 1:p, FUN = function(i) matrix(rnorm(m), ncol = 1))
if (m > 0) {
wwT_g_eta <- lapply(X = outcomes_units, FUN = xxT_g_eta_fun,
xxT = wwT, g_eta = g_eta, K = m)
Omega_inv <- lapply(X = outcomes_nodes,
FUN = function(outcomes, w, m, omega) 2 * Reduce(`+`, w[outcomes]) +
diag(1 / omega, nrow = m),
w = wwT_g_eta,
m = m,
omega = hyperparams$omega)
Omega <- sapply(Omega_inv, solve, simplify = F)
Omega_det <- sapply(Omega, det, simplify = T)
} else {
Omega <- rep(list(matrix(nrow = 0, ncol = 0)), p)
Omega_inv <- rep(list(matrix(nrow = 0, ncol = 0)), p)
Omega_det <- rep(1, p)
}
# Put VI parameters in list
vi_params <- list(mu = mu, prob = prob, Sigma = Sigma,
Sigma_inv = Sigma_inv, Sigma_det = Sigma_det,
tau_t = tau_t, delta = delta,
Omega = Omega, Omega_inv = Omega_inv,
Omega_det = Omega_det,
a_rho = a_rho, b_rho = b_rho)
# Compute initial ELBO
hyperparams <- update_hyperparams_logistic_moretrees(X = X,
W = W,
y = y,
outcomes_units = outcomes_units,
ancestors = ancestors,
n = n, K = K, p = p, m = m,
prob = prob, mu = mu,
Sigma = Sigma, Sigma_det = Sigma_det,
tau_t = tau_t, delta = delta,
Omega = Omega, Omega_det = Omega_det,
eta = hyperparams$eta, g_eta = hyperparams$g_eta,
omega = hyperparams$omega, tau = hyperparams$tau,
a_rho = a_rho, b_rho = b_rho,
update_hyper = F)
return(list(vi_params = vi_params, hyperparams = hyperparams))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.