run.tsne | R Documentation |
Method to run a tSNE dimensionality reduction algorithm. A tSNE (t-distributed stochastic neighbor embedding) plot is a useful means to visualise data. As it is a dimensionality reduction algorithm, some data will be lost. It is good practice to validate any populations (namely through manual gating). Output data will be "tsne.res". Uses the R package "Rtsne" to calculate plots.
run.tsne(dat, use.cols, tsne.x.name, tsne.y.name, tsne.seed,
dims, initial_dims, perplexity, theta, check_duplicates, pca,
max_iter, verbose, is_distance, Y_init, stop_lying_iter,
mom_switch_iter, momentum, final_momentum, eta, exaggeration_factor)
dat |
NO DEFAULT. data.frame. |
use.cols |
NO DEFAULT. Vector of numbers, reflecting the columns to use for dimensionality reduction. |
tsne.x.name |
DEFAULT = "tSNE_X". Character. Name of tSNE x-axis. |
tsne.y.name |
DEFAULT = "tSNE_Y". Character. Name of tSNE y-axis. |
tsne.seed |
DEFAULT = 42. Numeric. Seed value for reproducibility. |
dims |
DEFAULT = 2. Number of dimensions for output results, either 2 or 3. |
initial_dims |
DEFAULT = 50. Number of dimensions retained in initial PCA step. |
perplexity |
DEFAULT = 30. |
theta |
DEFAULT = 0.5. Use 0.5 for Barnes-Hut tSNE, 0.0 for exact tSNE (takes longer). |
check_duplicates |
DEFAULT = FALSE. |
pca |
DEFAULT = TRUE. Runs PCA prior to tSNE run. |
max_iter |
DEFAULT = 1000. Maximum number of iterations. |
verbose |
DEFAULT = TRUE. |
is_distance |
DEFAULT = FALSE. Experimental, using X as a distance matrix. |
Y_init |
DEFAULT = NULL. Recommend NULL for random initialisation. |
stop_lying_iter |
DEFAULT = 250. Number of iterations of early exaggeration. |
mom_switch_iter |
DEFAULT = 250. Number of iterations before increased momentum of spread. |
momentum |
DEFAULT = 0.5. Initial momentum of spread. |
final_momentum |
DEFAULT = 0.8. Momentum of spread at 'final_momentum'. |
eta |
DEFAULT = 200. Learning rate. |
exaggeration_factor |
DEFAULT = 12.0. Factor used during early exaggeration. |
Felix Marsh-Wakefield, felix.marsh-wakefield@sydney.edu.au
# Run tSNE on a subset of the demonstration dataset
cell.dat <- do.subsample(Spectre::demo.clustered, 10000) # Subsample the demo dataset to 10000 cells
cell.dat <- Spectre::run.tsne(dat = cell.dat,
use.cols = c("NK11_asinh", "CD3_asinh",
"CD45_asinh", "Ly6G_asinh", "CD11b_asinh",
"B220_asinh", "CD8a_asinh",
"Ly6C_asinh", "CD4_asinh"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.