classify_polarity <- function(textColumns,algorithm="bayes",pstrong=0.5,pweak=1.0,prior=1.0,verbose=FALSE,...) {
matrix <- create_matrix(textColumns,...)
lexicon <- read.csv(system.file("data/subjectivity.csv.gz",package="sentiment"),header=FALSE)
counts <- list(positive=length(which(lexicon[,3]=="positive")),negative=length(which(lexicon[,3]=="negative")),total=nrow(lexicon))
documents <- c()
for (i in 1:nrow(matrix)) {
if (verbose) print(paste("DOCUMENT",i))
scores <- list(positive=0,negative=0)
doc <- matrix[i,]
words <- findFreqTerms(doc,lowfreq=1)
for (word in words) {
index <- pmatch(word,lexicon[,1],nomatch=0)
if (index > 0) {
entry <- lexicon[index,]
polarity <- as.character(entry[[2]])
category <- as.character(entry[[3]])
count <- counts[[category]]
score <- pweak
if (polarity == "strongsubj") score <- pstrong
if (algorithm=="bayes") score <- abs(log(score*prior/count))
if (verbose) {
print(paste("WORD:",word,"CAT:",category,"POL:",polarity,"SCORE:",score))
}
scores[[category]] <- scores[[category]]+score
}
}
if (algorithm=="bayes") {
for (key in names(scores)) {
count <- counts[[key]]
total <- counts[["total"]]
score <- abs(log(count/total))
scores[[key]] <- scores[[key]]+score
}
} else {
for (key in names(scores)) {
scores[[key]] <- scores[[key]]+0.000001
}
}
best_fit <- names(scores)[which.max(unlist(scores))]
ratio <- as.integer(abs(scores$positive/scores$negative))
if (ratio==1) best_fit <- "neutral"
documents <- rbind(documents,c(scores$positive,scores$negative,abs(scores$positive/scores$negative),best_fit))
if (verbose) {
print(paste("POS:",scores$positive,"NEG:",scores$negative,"RATIO:",abs(scores$positive/scores$negative)))
cat("\n")
}
}
colnames(documents) <- c("POS","NEG","POS/NEG","BEST_FIT")
return(documents)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.