R/plot_design.R

Defines functions plot_design

Documented in plot_design

#' Plot the generated stimuli's design
#'
#' Takes the output from `generate()` or `long_format()`, and plots conditions' distributions on numeric variables used in the generate pipeline (i.e. indepdent variables, controls). Alternatively, distributions of any numeric variables in the original dataframe can be queried.
#'
#' @param df Output from `generate()` or `long_format()`
#' @param include A character vector indicating which variables to include in the plot. This can be those specified by `split_by()` and `control_for()` (`"design"`), only those specified in `split_by()` (`"splits"`), or only those specified by `control_for()` (`"controls"`). Alternatively, this can be a character vector of the variables that should be plotted, that were in the original dataframe. Default is `"design"`.
#' @param dodge_width The width to give to `ggplot2::position_dodge` (default is 0.2)
#' @param point_size Size of points (default = 0.75)
#' @param line_width Thickness of lines (default = 1)
#' @param force Logical, should the function be forced to try and work if attributes are missing (default is `TRUE`)? If `TRUE`, will expect the dataframe to have a structure similar to that produced by `long_format()`, where `condition` is character or factor, and `item_nr` is numeric or factor. Other variables will be plot-able if given to the `include` argument.
#' @param id_col A character vector specifying the column identifying unique observations (e.g. in `LexOPS::lexops`, the `id_col` is `"string"`). Ignored unless `force=TRUE`, in which case it is required.
#'
#' @return A ggplot object showing how conditions differ in independent variables, and are matched for in controls.
#'
#' @examples
#'
#' stim <- lexops |>
#'   dplyr::filter(PK.Brysbaert >= .75) |>
#'   split_by(BG.SUBTLEX_UK, 0.001:0.003 ~ 0.009:0.011) |>
#'   split_by(CNC.Brysbaert, 1:2 ~ 4:5) |>
#'   control_for(Zipf.SUBTLEX_UK, -0.2:0.2) |>
#'   control_for(Length) |>
#'   generate(n = 50, match_null = "balanced")
#' plot_design(stim)
#'
#' @export

plot_design <- function(df, include = "design", dodge_width = 0.1, point_size = 0.5, line_width = 1, force = TRUE, id_col = "string") {
  # get attributes
  if (is.null(attr(df, "LexOPS_info"))) {
    if (force) {
      warning("Attributes missing - will try to add attributes. Make sure you set id_col if not \"string\".")
      LexOPS_attrs <- list()
      LexOPS_attrs$generated <- TRUE
      LexOPS_attrs$is.long_format <- TRUE
      if (is.null(LexOPS_attrs$meta_df)) LexOPS_attrs$meta_df <- dplyr::select(df, -condition, -item_nr)
    } else {
      LexOPS_attrs <- NULL
    }
  } else {
    LexOPS_attrs <- attr(df, "LexOPS_info")
    # get options from attributes
    if (!is.null(LexOPS_attrs$options$id_col)) {
      id_col <- LexOPS_attrs$options$id_col
    } else {
      if ("string" %in% colnames(LexOPS_attrs$meta_df)) {
        id_col <- "string"
      } else {
        stop("Specify id_col with set_options() to use plot_design()")
      }
    }
  }
  # check is generated stimuli
  if (is.null(LexOPS_attrs$generated)) stop("Must run `generate()` on `df` before using `plot_design()` (try `force = TRUE`?).")
  # ensure is in long format
  if (is.null(LexOPS_attrs$is.long_format)) df <- LexOPS::long_format(df)

  # get vector of splits (IVs)
  splits <- sapply(LexOPS_attrs$splits, dplyr::first)

  # remove random splits
  if (!is.null(LexOPS_attrs$random_splits)) {
    splits <- splits[-LexOPS_attrs$random_splits]
  }

  # get vector of control variables
  controls <- c( sapply(LexOPS_attrs$controls, dplyr::first), sapply(LexOPS_attrs$control_functions, dplyr::first) )

  # get df which contains all the original variables for the generated stimuli
  meta_df <- LexOPS_attrs$meta_df %>%
    dplyr::filter(!!dplyr::sym(id_col) %in% df[[id_col]])

  # convert to numeric if appropriate
  num_cols <- colnames(meta_df)[sapply(meta_df, function(x) suppressWarnings(all(!is.na(as.numeric(x))))) & colnames(meta_df) != id_col]
  meta_df <- suppressWarnings(dplyr::mutate(meta_df, dplyr::across(dplyr::all_of(num_cols), as.numeric)))

  # check the id col is as character in both df and meta_df
  df[[id_col]] <- as.character(df[[id_col]])
  meta_df[[id_col]] <- as.character(meta_df[[id_col]])

  # join this to df
  plot_df <- dplyr::select(df, c(item_nr, condition, !!dplyr::sym(id_col))) %>%
    dplyr::right_join(meta_df, by = id_col)

  # factor vector of variables to plot
  plot_vars <- if (all(include == "design")) {
    c(splits, controls)
  } else if (all(include == "splits")) {
    splits
  } else if (all(include == "controls")) {
    controls
  } else {
    include
  }

  # flatten to vector
  plot_vars <- unlist(plot_vars)

  # remove non-numeric variables
  plot_vars <- plot_vars[sapply(meta_df[plot_vars], is.numeric)]

  # function to recode a variable name as a heading
  plot_vars_headings <- sapply(plot_vars, function(v) {
    measure <- LexOPS::var_to_measure(v, first_cite = FALSE, title_caps = TRUE, standard_eval = TRUE)
    source <- LexOPS::var_to_source(v, first_cite = FALSE, standard_eval = TRUE)
    out <- if (nchar(measure) == 0 & nchar(source) == 0) sprintf("%s\n", v) else sprintf("%s\n%s", measure, source)
    out
  }, USE.NAMES = FALSE)

  # generate the point positions
  point_pos <- ggplot2::position_dodge(dodge_width)

  # plot the numeric variables
  plot_df %>%
    dplyr::rename_at(plot_vars, ~ plot_vars_headings) %>%
    tidyr::gather("variable", "value", plot_vars_headings) %>%
    ggplot2::ggplot(ggplot2::aes(x = condition, y = value)) +
    ggplot2::geom_violin(colour = NA, fill = "grey", alpha = 0.5) +
    ggplot2::geom_point(ggplot2::aes(group = as.factor(item_nr)), position = point_pos, alpha = 0.75, size = point_size) +
    ggplot2::geom_line(ggplot2::aes(group = as.factor(item_nr)), position = point_pos, alpha = 0.25, size = line_width) +
    ggplot2::facet_wrap(~variable, scales = "free") +
    ggplot2::theme_bw() +
    ggplot2::labs(x = "Condition", y = "Value")
}
JackEdTaylor/LexOPS documentation built on Oct. 11, 2024, 10:38 p.m.