setMethod("publish",
signature = signature(
object = "DGELRT",
publicationType = "HTMLReport"
),
def = function(object, publicationType, countTable, conditions,
annotation.db = 'org.Hs.eg', n = 1000,
pvalueCutoff = 0.01, lfc = 0, adjust.method = 'BH',
sort.method = 'p.value', ...){
## First, make a data.frame for publication,
## then call publish on that data.frame
df <- .DGELRT.to.html(object, publicationType, as.matrix(countTable),
conditions, annotation.db = annotation.db, n = n,
pvalueCutoff = pvalueCutoff, lfc = lfc,
adjust.method = adjust.method, sort.method = sort.method, ...)
publish(df, publicationType, ...)
}
)
.DGELRT.to.data.frame <- function(object, annotation.db = 'org.Hs.eg',
pvalueCutoff = 0.01, n = 1000, lfc = 0, adjust.method='BH',
sort.method = 'p.value', make.plots = FALSE, ...)
{
dat <- topTags(object, n = n, adjust.method = adjust.method, sort.by = sort.method)
if(!is.null(object$genes) & all(rownames(object$genes) ==
as.character(seq_along(rownames(object$genes))))){
selection <- as.numeric(rownames(dat$table))
selection <- rownames(object$table)[selection]
} else {
selection <- rownames(dat$table)
}
##The following gives you all pvalues
padj <- p.adjust(object$table$PValue, method = adjust.method)
padj <- padj[match(selection, rownames(object$table))]
dat <- data.frame(dat$table, padj)
dat.adj <- dat[dat$padj < pvalueCutoff,]
dat.lfc <- dat.adj[abs(dat.adj$logFC) > abs(lfc), ]
if(length(rownames(dat.lfc)) == 0)
stop("No genes meet the selection criteria. Try changing the log-fold change or p-value cutoff.")
ann.map.available <- tryCatch(getAnnMap("SYMBOL", annotation.db),
error=function(e){ return(FALSE) })
if (inherits(ann.map.available, "AnnDbBimap")){
## Check valid Entrez ids are passed in
check.eg.ids(rownames(dat), annotation.db)
fdata <- annotate.genes(rownames(dat), annotation.db,
keytype = "ENTREZID", columns = list(EntrezId = "ENTREZID",
Symbol = "SYMBOL", GeneName = "GENENAME"))
} else {
if(!is.null(object$genes)){
fdata <- object$genes[match(selection, rownames(object$table)), ,
drop = FALSE]
if(!all(rownames(fdata) == selection))
rownames(fdata) <- selection
} else {
IDs <- rownames(dat.lfc)
fdata <- data.frame(IDs, stringsAsFactors = FALSE)
rownames(fdata) <- IDs
}
}
if(make.plots){
ret <- data.frame(
fdata,
Image = rep("", nrow(fdata)),
dat.lfc$logFC,
dat.lfc$padj,
stringsAsFactors = FALSE
)
} else {
ret <- data.frame(
fdata,
dat.lfc$logFC,
dat.lfc$padj,
stringsAsFactors = FALSE
)
}
colnames(ret)[which(colnames(ret) == 'dat.lfc.logFC')] <- 'logFC'
colnames(ret)[which(colnames(ret) == 'dat.lfc.padj')] <- 'Adjusted p-Value'
return(ret)
}
.DGELRT.to.html <- function(object, htmlRep, countTable, conditions,
annotation.db = 'org.Hs.eg', pvalueCutoff = 0.01, n = 1000, lfc = 0,
adjust.method = 'BH', sort.method = 'p.value', make.plots = TRUE, ...)
{
dat <- topTags(object, n = n, adjust.method = adjust.method, sort.by = sort.method)
## Check valid Entrez ids are passed in
check.eg.ids(rownames(dat), annotation.db)
selection <- as.numeric(rownames(dat$table))
##The following gives you all pvalues
padj <- p.adjust(object$table$PValue, method = adjust.method)
padj <- padj[match(selection, rownames(object$table))]
dat <- data.frame(dat$table, padj)
dat.adj <- dat[dat$padj < pvalueCutoff,]
dat.lfc <- dat.adj[abs(dat.adj$logFC) > abs(lfc), ]
if(length(rownames(dat.lfc)) == 0)
stop("No genes meet the selection criteria. Try changing the log-fold change or p-value cutoff.")
ann.map.available <- tryCatch(getAnnMap("SYMBOL", annotation.db),
error=function(e){ return(FALSE)})
if (inherits(ann.map.available, "AnnDbBimap")){
fdata <- data.frame(
EntrezId = unlist(rownames(dat.lfc)),
Symbol = unlist(mget(rownames(dat.lfc),
getAnnMap("SYMBOL", annotation.db), ifnotfound = NA)),
GeneName = unlist(mget(rownames(dat.lfc),
getAnnMap("GENENAME", annotation.db), ifnotfound = NA)),
stringsAsFactors = FALSE
)
fdata$EntrezId <- hwrite(fdata$EntrezId,
link=paste("http://www.ncbi.nlm.nih.gov/gene/", fdata$EntrezId, sep=''), table=FALSE)
} else {
IDs <- rownames(dat.lfc)
fdata <- data.frame(IDs, stringsAsFactors = FALSE)
}
if( ! make.plots ){
ret <- data.frame(
fdata,
dat.lfc$logFC,
dat.lfc$padj,
stringsAsFactors = FALSE
)
} else {
ret <- data.frame(
fdata,
Image = rep("", nrow(fdata)),
dat.lfc$logFC,
dat.lfc$padj,
stringsAsFactors = FALSE
)
## log2 transform count data and add one for psuedocount
countTable <- log2(countTable + 1)
figures.dirname <- paste('figures', name(htmlRep), sep='')
figure.directory <- file.path(basePath(htmlRep),
reportDirectory(htmlRep), figures.dirname)
.safe.dir.create(figure.directory)
.make.gene.plots(ret, countTable, conditions, figure.directory,
ylab.type = "(log2 counts per million)")
mini.image <- file.path(figures.dirname,
paste("mini", rownames(dat.lfc), "png", sep="."))
pdf.image <- file.path(figures.dirname,
paste("boxplot", rownames(dat.lfc), "pdf", sep="."))
ret$Image <- hwriteImage(mini.image, link=pdf.image, table=FALSE)
}
colnames(ret)[which(colnames(ret) == 'dat.lfc.logFC')] <- 'logFC'
colnames(ret)[which(colnames(ret) == 'dat.lfc.padj')] <- 'Adjusted p-Value'
return(ret)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.