#' plotBAR
#'
#'Analyse RNA-seq data
#' @param x GO or KEGG enrich analized data
#' @param enrichTYPE GO or KEGG enrich type
#' @example
#' plotBAR(x,enrichTYPE)
plotBAR<-function(x,enrichTYPE){
type_list<-c("GO","KEGG")
if (!enrichTYPE%in%species_list) {
ERRORinSPECIES<-paste("input should be one of",paste(type_list,collapse = ","))
stop('"enrichTYPE"', ERRORinSPECIES)
}
if (enrichTYPE=="GO") {
GO_2<-x
GO_3<-GO_2[,c(4,7,11)]
GO_4<--log10(GO_3$pvalue)
GO_5<-GO_3[,c(1,3)]
GO_6<-cbind(GO_5,GO_4)
colnames(GO_6)<-c('GO_terms','Gene_counts','-log10(Pvalue)')
GO_7<-GO_6[order(GO_6$`-log10(Pvalue)`,decreasing = TRUE),]
GO_8<-GO_7[c(1:20),]#取最显著的20个通路
ggplot(GO_8)+
geom_col(aes(x=reorder(GO_terms,`-log10(Pvalue)`),y=Gene_counts),
color='black',#柱边框颜色
width= 0.6,#柱宽
fill='#d5a478')+
labs(x=NULL,y='Gene count', #自定义x、y轴、标题内容
title = 'Enriched GO Terms (expanded gene families)')+
theme_test(base_size = 15)+ #主题基本大小
theme(axis.text.x = element_text(angle = 45,hjust = 1,size = 8),
axis.text = element_text(color = 'black',face = 'bold'),
#plot.margin = margin(1,0.5,0.5,2.5,'cm'),
panel.border = element_rect(size = 1),
axis.title = element_text(face = 'bold'),
plot.title = element_text(face = 'bold',
size=13,hjust = 0.5))->p_A
p_B <- p_A+
geom_text(aes(x=reorder(GO_terms,`-log10(Pvalue)`),
y=Gene_counts,
label=Gene_counts),
vjust=-0.5,size=3.5,fontface='bold')
p_C <- p_B+
scale_y_continuous(sec.axis = sec_axis(~./42,
name = '-log10(Pvalue)',
))+
geom_line(aes(x= GO_terms,
y=`-log10(Pvalue)`*42,
group=1),
linetype=3,cex=1)+
geom_point(aes(x= GO_terms,
y=`-log10(Pvalue)`*42),
color='#589c47',size=3.5)
return(p_C)
}
if (enrichTYPE=="KEGG") {
KEGG_2<-x
KEGG_3<-KEGG_2[,c(3,6,10)]
KEGG_4<--log10(KEGG_3$pvalue)
KEGG_5<-KEGG_3[,c(1,3)]
KEGG_6<-cbind(KEGG_5,KEGG_4)
colnames(KEGG_6)<-c('KEGG_terms','Gene_counts','-log10(Pvalue)')
KEGG_7<-KEGG_6[order(KEGG_6$`-log10(Pvalue)`,decreasing = TRUE),]
KEGG_8<-KEGG_7[c(1:20),]#取最显著的十个通路
ggplot(KEGG_8)+
geom_col(aes(x= reorder(KEGG_terms,`-log10(Pvalue)`) ,y=Gene_counts),
color='black',#柱边框颜色
width= 0.6,#柱宽
fill='#d5a478')+
labs(x=NULL,y='Gene count', #自定义x、y轴、标题内容
title = 'Enriched KEGG Terms (expanded gene families)')+
theme_test(base_size = 15)+ #主题基本大小
theme(axis.text.x = element_text(angle = 45,hjust = 1,size = 8),
axis.text = element_text(color = 'black',face = 'bold'),
#plot.margin = margin(1,0.5,0.5,2.5,'cm'),
panel.border = element_rect(size = 1),
axis.title = element_text(face = 'bold'),
plot.title = element_text(face = 'bold',
size=13,hjust = 0.5))->p_D
p_E <- p_D+
geom_text(aes(x= reorder(KEGG_terms,`-log10(Pvalue)`),
y=Gene_counts,
label=Gene_counts),
vjust=-0.5,size=3.5,fontface='bold')
p_F <- p_E+
scale_y_continuous(sec.axis = sec_axis(~./42,
name = '-log10(Pvalue)',
))+
geom_line(aes(x= KEGG_terms,
y=`-log10(Pvalue)`*42,
group=1),
linetype=3,cex=1)+
geom_point(aes(x= KEGG_terms,
y=`-log10(Pvalue)`*42),
color='#589c47',size=3.5)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.