View source: R/cytof_progression.R
| cytof_progression | R Documentation | 
Infer the progression based on the relationship of cell subsets estimated using ISOMAP or Diffusion map.
cytof_progression(
  data,
  cluster,
  method = c("isomap", "NULL"),
  distMethod = "euclidean",
  out_dim = 2,
  clusterSampleMethod = c("ceil", "all", "fixed", "min"),
  clusterSampleSize = 500,
  sampleSeed = 123
)
data | 
 Expression data matrix.  | 
cluster | 
 A vector of cluster results for the data.  | 
method | 
 Method for estimation of cell progression, isomap.  | 
distMethod | 
 Method for distance calculation, default is "euclidean", other choices like "manhattan", "cosine", "rankcor".  | 
out_dim | 
 Number of transformed dimensions choosen for output.  | 
clusterSampleMethod | 
 Cluster sampling method including   | 
clusterSampleSize | 
 The number of cells to be sampled from each cluster.  | 
sampleSeed | 
 The seed for random down sample of the clusters.  | 
a list. Includes: sampleData, sampleCluster and progressionData.
## Not run: 
d<-system.file('extdata', package='cytofkit2')
fcsFile <- list.files(d, pattern='.fcs$', full=TRUE)
parameters <- list.files(d, pattern='.txt$', full=TRUE)
markers <- as.character(read.table(parameters, header = TRUE)[, 1])
xdata <- cytof_exprsMerge(fcsFile, mergeMethod = 'fixed', fixedNum = 2000)
clusters <- cytof_cluster(xdata = xdata, method = "Rphenograph")
prog <- cytof_progression(data = xdata, cluster = clusters, clusterSampleSize = 100)
d <- as.data.frame(cbind(prog$progressionData, cluster = factor(prog$sampleCluster)))
cytof_clusterPlot(data =d, xlab = "diffusionmap_1", ylab="diffusionmap_2",
                  cluster = "cluster", sampleLabel = FALSE)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.