View source: R/cytof_progression.R
| cytof_progression | R Documentation |
Infer the progression based on the relationship of cell subsets estimated using ISOMAP or Diffusion map.
cytof_progression(
data,
cluster,
method = c("isomap", "NULL"),
distMethod = "euclidean",
out_dim = 2,
clusterSampleMethod = c("ceil", "all", "fixed", "min"),
clusterSampleSize = 500,
sampleSeed = 123
)
data |
Expression data matrix. |
cluster |
A vector of cluster results for the data. |
method |
Method for estimation of cell progression, isomap. |
distMethod |
Method for distance calculation, default is "euclidean", other choices like "manhattan", "cosine", "rankcor". |
out_dim |
Number of transformed dimensions choosen for output. |
clusterSampleMethod |
Cluster sampling method including |
clusterSampleSize |
The number of cells to be sampled from each cluster. |
sampleSeed |
The seed for random down sample of the clusters. |
a list. Includes: sampleData, sampleCluster and progressionData.
## Not run:
d<-system.file('extdata', package='cytofkit2')
fcsFile <- list.files(d, pattern='.fcs$', full=TRUE)
parameters <- list.files(d, pattern='.txt$', full=TRUE)
markers <- as.character(read.table(parameters, header = TRUE)[, 1])
xdata <- cytof_exprsMerge(fcsFile, mergeMethod = 'fixed', fixedNum = 2000)
clusters <- cytof_cluster(xdata = xdata, method = "Rphenograph")
prog <- cytof_progression(data = xdata, cluster = clusters, clusterSampleSize = 100)
d <- as.data.frame(cbind(prog$progressionData, cluster = factor(prog$sampleCluster)))
cytof_clusterPlot(data =d, xlab = "diffusionmap_1", ylab="diffusionmap_2",
cluster = "cluster", sampleLabel = FALSE)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.