#' Negative binomial distribution maximum likelihood estimation
#'
#' For the density function of the Negative binomial distribution see
#' [Negative binomial][stats::dnbinom].
#'
#' @param x a (non-empty) numeric vector of data values.
#' @param na.rm logical. Should missing values be removed?
#' @param ... The arguments `size` can be specified to only return the ml of `prob`.
#' `reltol` is the relative accuracy requested,
#' defaults to `.Machine$double.eps^0.25`. `iterlim` is a positive integer
#' specifying the maximum number of iterations to be performed before the
#' program is terminated (defaults to `100`).
#' @return `mlnbinom` returns an object of [class][base::class] `univariateML`.
#' This is a named numeric vector with maximum likelihood estimates for
#' `size` and `prob` and the following attributes:
#' \item{`model`}{The name of the model.}
#' \item{`density`}{The density associated with the estimates.}
#' \item{`logLik`}{The loglikelihood at the maximum.}
#' \item{`support`}{The support of the density.}
#' \item{`n`}{The number of observations.}
#' \item{`call`}{The call as captured my `match.call`}
#' @examples
#' mlnbinom(corbet)
#' @seealso [Negative binomial][stats::dnbinom] for the density.
#' @references
#' Johnson, N. L., Kemp, A. W., & Kotz, S. (2005). Univariate Discrete Distributions (3rd ed.). Wiley-Blackwell.
#' @export
mlnbinom <- \(x, na.rm = FALSE, ...) {}
metadata$mlnbinom <- list(
"model" = "Negative binomial",
"density" = "stats::dnbinom",
"support" = intervals::Intervals(c(0, Inf), closed = c(TRUE, FALSE), type = "Z"),
"names" = c("size", "prob"),
"default" = c(10, 0.3)
)
mlnbinom_ <- \(x, ...) {
dots <- list(...)
reltol <- get_reltol(dots)
iterlim <- get_iterlim(dots)
n <- length(x)
x_bar <- mean(x)
get_prob <- \(size) size / (x_bar + size)
if (is.null(dots$size)) {
if (mean(x) == 0) {
warning("All observations are 0; the maximum likelihood estimator is not unique.")
size <- 1
} else {
dget_prob <- \(size) x_bar / (size^2 + x_bar * size)
f <- \(size) sum(digamma(x + size)) - n * digamma(size) + n * log(get_prob(size))
df <- \(size) sum(trigamma(x + size)) - n * trigamma(size) + n * dget_prob(size)
# Start at method of moments estimate.
x_var <- stats::var(x)
if (x_var * (n - 1) / n < x_bar) {
stop("The maximum likelihood estimator does not exists for underdispersed data, but converges to a Poisson. Use `mlpois` instead.")
}
size0 <- x_bar^2 / (x_var - x_bar)
for (i in seq(iterlim)) {
size <- size0 - f(size0) / df(size0)
if (abs((size0 - size) / size0) < reltol) break
size0 <- size
}
}
} else {
size <- dots$size
}
prob <- get_prob(size)
logLik <- sum(lgamma(x + size)) - sum(lfactorial(x)) - n * lgamma(size) +
n * size * log(prob) + n * log(1 - prob) * x_bar
list(estimates = c(size, prob), logLik = logLik)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.