cotton_defol: Number of Bolls in Cotton under Artifitial Defoliation

Description Format References Examples

Description

These data are the results of a greenshouse factorial experiment performed to evaluate the effect of defoliation on the production of cotton at different growth stages. The experiment is a 5\times 5 factorial with 5 replications in a complete randomized design. The experimental unit was a pot with 2 cotton plants. The response variable is the number of bolls produced at the end of the crop cycle. The observed number of cotton bolls is a count variable with underdispersion (sample variance less than the sample mean).

Format

A data.frame with 125 records and 4 variables, described below.

References

Silva, A. M., Degrande, P. E., Suekane, R., Fernandes, M. G., Zeviani, W. M. (2012). Impacto de diferentes n<c3><ad>veis de desfolha artificial nos est<c3><a1>dios fenol<c3><b3>gicos do algodoeiro. Revista de Ci<c3><aa>ncias Agr<c3><a1>rias, 35(1), 163<e2><80><93>172. http://www.scielo.mec.pt/pdf/rca/v35n1/v35n1a16.pdf.

Zeviani, W. M., Ribeiro, P. J., Bonat, W. H., Shimakura, S. E., Muniz, J. A. (2014). The Gamma-count distribution in the analysis of experimental underdispersed data. Journal of Applied Statistics, 41(12), 1<e2><80><93>11. http://doi.org/10.1080/02664763.2014.922168, http://leg.ufpr.br/doku.php/publications:papercompanions:zeviani-jas2014.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
library(lattice)
library(latticeExtra)

data(cotton_defol)
str(cotton_defol)

# x11(width = 7, height = 2.8)
xyplot(bolls ~ defol | phenol,
       data = cotton_defol,
       layout = c(NA, 1),
       type = c("p", "smooth"),
       xlab = "Artificial defoliation level",
       ylab = "Number of bolls produced",
       xlim = extendrange(c(0:1), f = 0.15),
       jitter.x = TRUE)

# Sample mean and variance in each treatment cell.
mv <- aggregate(bolls ~ phenol + defol,
                data = cotton_defol,
                FUN = function(x) {
                    c(mean = mean(x), var = var(x))
                })
str(mv)

xlim <- ylim <- extendrange(c(mv$bolls), f = 0.05)

# Evidence of underdispersion.
xyplot(bolls[, "var"] ~ bolls[, "mean"],
       data = mv,
       grid = TRUE,
       aspect = "iso",
       type = c("p", "r"),
       xlim = xlim,
       ylim = ylim,
       ylab = "Sample variance",
       xlab = "Sample mean") +
    layer(panel.abline(a = 0, b = 1, lty = 2))

JrEduardo/CountReg documentation built on May 7, 2019, 12:04 p.m.