# library(hhh4ZI)
data("measles", package = "hhh4ZI")
measles <- aggregate(measles, by = "time", nfreq = 26)
stsObj <- measles
neW <- neighbourhood(measles)
f.1 <- addSeason2formula(f = ~-1 + fe(1, unitSpecific = TRUE),
S = 1, period = 26)
f.2 <- addSeason2formula(f = ~-1 + fe(1, unitSpecific = FALSE),
S = 1, period = 26)
f.3 <- addSeason2formula(f = ~-1 + fe(1, unitSpecific = FALSE))
# f.ar <- ~ -1 + fe(1, unitSpecific = TRUE)
# f.ne <- ~-1 + fe(1, unitSpecific = TRUE)
fitZi <- hhh4ZI(stsObj,
control = list(
ar = list(f = f.3, # a formula "exp(x'lamba)*y_t-lag" (ToDo: matrix)
offset = 1, # multiplicative offset
lag = 1), # autoregression on y_i,t-lag
ne = list(f = ~1, # a formula "exp(x'phi) * sum_j w_ji * y_j,t-lag"
offset = 1, # multiplicative offset
lag = 1, # regression on y_j,t-lag
weights = neW == 1, # weights w_ji
scale = NULL, # such that w_ji = scale * weights
normalize = TRUE), # w_ji -> w_ji / rowSums(w_ji), after scaling
end = list(f = f.1, # a formula "exp(x'nu) * n_it"
offset = 1), # optional multiplicative offset e_it
zi = list(f = f.1,
lag = 1 # can be a scalar or vector
),
family = c("NegBin1"), # or a factor of length nUnit for Negbin
#subset = 2:nrow(stsObj), # epidemic components require Y_{t-lag}
optimizer = list(stop = list(tol = 1e-5, niter = 100), # control arguments
regression = list(method = "nlminb"), # for optimization
variance = list(method = "Nelder-Mead")), # <- or "Nelder-Mead"
verbose = TRUE, # level of reporting during optimization
start = list(fixed = NULL, # list of start values, replacing initial
random = NULL, # values from fe() and ri() in 'f'ormulae
sd.corr = NULL),
data = list(t = stsObj@epoch - min(stsObj@epoch)), # named list of covariates
keep.terms = TRUE # whether to keep interpretControl(control, stsObj)
)
)
summary(fitZi)
fitZi2 <- update(fitZi,subset.upper=370)
summary(fitZi2)
pred <- oneStepAhead(fitZi, 318, type = "rolling", which.start = "current")
x <- hhh4ZI:::quantile.oneStepAhead_hhh4ZI(pred)
hhh4ZI:::plot.oneStepAhead_hhh4ZI(pred, unit = 11)
scores(pred)
scores(fitZi2)
pit(pred, units = 16)
fitH <- hhh4(stsObj,
control = list(
ar = list(f = ~-1 + ri(type = "iid", corr = "all"), # a formula "exp(x'lamba)*y_t-lag" (ToDo: matrix)
offset = 1, # multiplicative offset
lag = 1), # autoregression on y_i,t-lag
ne = list(f = ~-1 + ri(type = "iid", corr = "all"), # a formula "exp(x'phi) * sum_j w_ji * y_j,t-lag"
offset = 1, # multiplicative offset
lag = 1, # regression on y_j,t-lag
weights = neW == 1, # weights w_ji
scale = NULL, # such that w_ji = scale * weights
normalize = TRUE), # w_ji -> w_ji / rowSums(w_ji), after scaling
end = list(f = ~-1 + ri(type = "iid", corr = "all"), # a formula "exp(x'nu) * n_it"
offset = 1), # optional multiplicative offset e_it
family = c("NegBin1"), # or a factor of length nUnit for Negbin
#subset = 2:nrow(stsObj), # epidemic components require Y_{t-lag}
optimizer = list(stop = list(tol = 1e-5, niter = 200), # control arguments
regression = list(method = "nlminb"), # for optimization
variance = list(method = "Nelder-Mead")), # <- or "Nelder-Mead"
verbose = TRUE, # level of reporting during optimization
start = list(fixed = NULL, # list of start values, replacing initial
random = NULL, # values from fe() and ri() in 'f'ormulae
sd.corr = NULL),
data = list(t = stsObj@epoch - min(stsObj@epoch)), # named list of covariates
keep.terms = TRUE # whether to keep interpretControl(control, stsObj)
), check.analyticals = FALSE
)
summary(fitH)
fitH_ZI <- hhh4ZI(fitH, control = list(f = ~-1 + ri(type = "iid", corr = "all"),
lag = 1 # can be a scalar or vector
))
fitH_ZI <- hhh4ZI(fitH,
control = list(
ar = list(f = ~1, # a formula "exp(x'lamba)*y_t-lag" (ToDo: matrix)
offset = 1, # multiplicative offset
lag = 1), # autoregression on y_i,t-lag
ne = list(f = ~-1 + ri(type = "iid", corr = "all"), # a formula "exp(x'phi) * sum_j w_ji * y_j,t-lag"
offset = 1, # multiplicative offset
lag = 1, # regression on y_j,t-lag
weights = neW == 1, # weights w_ji
scale = NULL, # such that w_ji = scale * weights
normalize = TRUE), # w_ji -> w_ji / rowSums(w_ji), after scaling
end = list(f = ~-1 + ri(type = "iid", corr = "all"), # a formula "exp(x'nu) * n_it"
offset = 1), # optional multiplicative offset e_it
zi = list(f = ~-1 + ri(type = "iid", corr = "all"),
lag = 1), # can be a scalar or vector
family = c("NegBin1"), # or a factor of length nUnit for Negbin
#subset = 2:nrow(stsObj), # epidemic components require Y_{t-lag}
optimizer = list(stop = list(tol = 1e-5, niter = 200), # control arguments
regression = list(method = "nlminb"), # for optimization
variance = list(method = "Nelder-Mead")), # <- or "Nelder-Mead"
verbose = TRUE, # level of reporting during optimization
start = list(fixed = NULL, # list of start values, replacing initial
random = NULL, # values from fe() and ri() in 'f'ormulae
sd.corr = NULL),
data = list(t = stsObj@epoch - min(stsObj@epoch)), # named list of covariates
keep.terms = TRUE # whether to keep interpretControl(control, stsObj)
)
)
surveillance:::plot(fitH)
#plotHHH4ZI_fitted(fitH_ZI, decompose = TRUE)
plotHHH4ZI_season(fitZi)
plotHHH4ZI_neweights(fitH_ZI)
plot(fitH_ZI, type = "ri", component = "zi.ri(iid)")
plot(fitH_ZI, type = "neweights")
plot(fitH_ZI, type = "fitted", unit = 3)
plot(fitH_ZI, type = "map")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.