Description Usage Arguments Value Examples
Create compacted environmental grids for AdaptR
1 2 | CompactGrids(compactor.parameter.file.name, ncols, nrows, n.env.vars,
n.time.points, raw.env.grids.name.files, output.env.name.file)
|
compactor.parameter.file.name |
A file path to a text file (.txt) to be created by this function, where the grid compactor parameter file will be saved |
ncols |
The number of columns on the spatial grid |
nrows |
The number of rows on the spatial grid |
n.env.vars |
The number of environment variables being considered |
n.time.points |
The number of time points for which compacted environment grids are to be created |
raw.env.grids.name.files |
A list of length n.env.vars of filepaths to text files holding the filepaths of individual environment grids to be compacted. |
output.env.name.file |
A filepath to a text file (.txt) holding the filepaths where the compacted environment grids will be saved. |
A set of compacted environment files in the specified location
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | ## Complete example of the multiple steps in applying AdaptR using data example provided for Drosophila jambulina
# 1. Set the filepath to the example data set
filepath.data <- system.file("extdata", package="AdaptR")
# 2. Create text files to describe the file path to each input variable, and the output variable
write.table((file.path(filepath.data,"Tmax",paste0("Tmax",seq(1:159),".asc"))), file = file.path(filepath.data,"Tmax","Tmax_filenames.txt"), eol = "\n", row.names = FALSE, col.names = FALSE, quote=FALSE )
write.table((file.path(filepath.data,"Habitat",paste0("Habitat",seq(1:159),".asc"))), file = file.path(filepath.data,"Habitat","Habitat_filenames.txt"), eol = "\n", row.names = FALSE, col.names = FALSE, quote=FALSE )
write.table((file.path(filepath.data,"compact_grids",paste0("demo_compact_grids_T",seq(1:159)))), file = file.path(filepath.data,"compact_grids","demo_compact_grids_output_filenames.txt"), eol = "\n", row.names = FALSE, col.names = FALSE, quote=FALSE )
# 3. Run the grid compactor
CompactGrids(compactor.parameter.file.name = file.path(filepath.data,"species_inputs","Jambulina__grid_compactor_parameter_file.txt"),
ncols = 100,
nrows = 79,
n.env.vars = 2,
n.time.points = 159,
raw.env.grids.name.files = c(file.path(filepath.data,"Tmax","Tmax_filenames.txt"),file.path(filepath.data,"Habitat","Habitat_filenames.txt")),
output.env.name.file = file.path(filepath.data,"compact_grids","demo_compact_grids_output_filenames.txt"))
# 4. Generate a dispersal kernel for the drosophila example
filepath.data <- system.file("extdata", package="AdaptR")
Dispersal_Neighbourhood(radius=5,
type="neg.power",
params=c(1,1),
output.name="Dispersal_relfile_L1_K1_rad5",
output.directory=file.path(filepath.data,"species_inputs"),
dispersal.plot=TRUE)
# 5. Create text files to describe the file path to the compact grids
write.table(paste0("demo_compact_grids_T",rep(1:159, length.out=159)), file = file.path(filepath.data,"species_inputs","compact_series_names.txt"), eol = "\n", row.names = FALSE, col.names = FALSE, quote=FALSE )
# 6. Run the AdaptR model
AdaptR(run.name = "jambulina_test",
parameter.file.name = file.path(filepath.data,"outputs","jambulina_test_parameters.txt"),
ncols = 100,
nrows = 79,
output.folder.path = file.path(filepath.data,"outputs"),
verbose.outputs = FALSE,
n.time.points = 159,
n.env.vars = 2,
env.vars.names = c("MaxTemp", "Other_Maxent"),
env.grids.folder.path = file.path(filepath.data,"compact_grids"),
env.grids.name.file = file.path(filepath.data,"species_inputs","compact_series_names.txt"),
species.initial.grid = file.path(filepath.data,"species_inputs","demo_jambulia_initial_distribution.asc"),
minimum.survival.percentage = 5,
resident.population.weighting = 1000,
dispersal.neighbourhood.file = file.path(filepath.data,"species_inputs","Dispersal_relfile_L1_K1_rad5.dna"),
species.location.file = file.path(filepath.data,"species_inputs","demo_locations_out.txt"),
env.lower.thresholds = c(19.47,0.99),
env.upper.thresholds = c(37.94547,1.01),
env.low.adaptation = c(FALSE,FALSE),
env.high.adaptation = c(TRUE,FALSE),
adapt.limit = c(40,0),
heritability = c(0.53,0),
fitness.cost = c(0.05,0),
adapt.threshold.grids = c(FALSE,FALSE),
phenotypic.sd.grid = c(FALSE,FALSE),
phenotypic.sd.value = c(1.106,0),
plasticity = c(1.106,0))
# 7. Map the predictions of the model (at the last time point)
map.single.run(output.folder.path = file.path(filepath.data,"outputs"),
run.name = "jambulina_test")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.