Description Usage Arguments Value Examples
View source: R/compute_corrected_mse.R
Function compute_mse
provides first-and
second-order MSE estimates for mixed parameter
1 | compute_corrected_mse(C_cluster, X, sig_u, sig_e, clusterID, model = "NERM")
|
C_cluster |
Cluster-level covariates for fixed and random parameters |
X |
Matrix with covariates for fixed effects |
sig_u |
Variance parameter of random effects |
sig_e |
Variance parameter of errors |
clusterID |
Vector with cluster labels |
model |
Model we want to fit. Only NERM is supported for now. |
List with parameters:
mse |
First-order correct MSE of mixed effects |
mse_corrected |
Second-order correct MSE of mixed effects |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | n = 10
m_i = 5
m_total = 50
clusterID = rep(1:n, m_i)
p = 10
beta = rep(2, p)
u_i = rnorm(n, 0, 2)
u_i_aug = rep(u_i, each = m_i)
X = matrix(rnorm(m_total * p), m_total, p)
y = X%*%beta + u_i_aug + rnorm(m_total, 0, 1)
fit_nerm <- estimate_NERM(X = X, y = y,
clusterID = clusterID,
X_cluster = NULL)
C_cluster = cbind(X[1:10, ], diag(n))
mse_second = compute_corrected_mse(C_cluster, X, sig_u = fit_nerm$sig_u,
sig_e = fit_nerm$sig_e,
clusterID = clusterID)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.