Description Usage Arguments Details Value Examples
Function postcAIC_CI
provides post-cAIC confidence intervals for
mixed and fixed effects under NERM
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | postcAIC_CI(
cAIC_min,
degcAIC_models,
X_full,
X_cluster_full,
sig_u_full,
sig_e_full,
model = "NERM",
clusterID,
beta_sel,
mu_sel,
modelset_matrix,
x_beta_lin_com = NULL,
n_starting_points = 5,
scale_mvrnorm = 1,
alpha = 0.05
)
|
cAIC_min |
Index of the selected model among models in the model set |
degcAIC_models |
Penalty for all considered models |
X_full |
Matrix with a full set of covariates |
X_cluster_full |
Matrix with cluster level covariates for fixed effects of the full model |
sig_u_full |
Variance parameter of random effects from the full model |
sig_e_full |
Variance parameter of errors from the full model |
model |
Type of mixed model. For the moment, only NERM is supposted. |
clusterID |
Vector with cluster labels |
beta_sel |
Fixed effects (regression parameters) of the selected model |
mu_sel |
Mixed effects of the selected model |
modelset_matrix |
Matrix composed of zeros and ones |
x_beta_lin_com |
Vector or matrix to create linear combinations with
fixed parameters. Default: |
n_starting_points |
Number of initial starting points for sampling from
a truncated normal distribution. Default: |
scale_mvrnorm |
Scale parameter for multivariate normal distribution
to sample. Default: |
alpha |
Construct 1 - alpha confidence intervals. Default: |
The running time of function postcAIC_CI
is extremely
sensitive to the choice of scaling factor scale_mvrnorm
which affects
the speed of finding initial starting points in function find_starting_points
.
These starting points are necessary to sample from a constrained normal distribution
from which we obtain critical values to construct confidence intervals. We suggest
choosing a larger/smaller value if the running time of function postcAIC_CI
is longer than 1 minute.
List with parameters:
beta_postcAIC_CI_up |
Upper boundary of CI for fixed effects |
beta_postcAIC_CI_do |
Lower boundary of CI for fixed effects |
mixed_postcAIC_CI_up |
Upper boundary of CI for mixed effects |
mixed_postcAIC_CI_do |
Lower boundary of CI for mixed effects |
beta_x_postcAIC_CI_up |
Upper boundary of CI for linear combinations of fixed effects |
beta_x_postcAIC_CI_do |
Lower boundary of CI for linear combinations of fixed effects |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | # Define basic parameters -------------------------------------------------
n = 15
m_i = 5
m_total = n * m_i
beta = c(2.25, -1.1, 2.43, rep(0, 2))
sig_e = 1
sig_u = 1
X = simulations_n15_mi5
X_intercept = cbind(rep(1, m_total), X)
clusterID = rep(1:n, each = m_i)
# Create responses, errors and random effects -------------------
e_ij = rnorm(m_total, 0, sig_e)
u_i = rnorm(n, 0, sig_u)
u_i_aug = rep(u_i, each = m_i)
y = X_intercept%*% beta + u_i_aug + e_ij
# Compute cAIC for models from the set of models -----------------------
cAIC_model_set = compute_cAIC_for_model_set(
X,
y,
clusterID,
model = "NERM",
covariate_selection_matrix = NULL,
modelset = "part_subset",
common = c(1:3),
intercept = FALSE
)
cAIC_min = cAIC_model_set$cAIC_min
degcAIC_models = cAIC_model_set$degcAIC_models
X_full = cAIC_model_set$X_full
X_cluster_full = cAIC_model_set$X_cluster_full
sig_u_full = cAIC_model_set$sig_u_full
sig_e_full = cAIC_model_set$sig_e_full
beta_sel = cAIC_model_set$beta_sel
mu_sel = cAIC_model_set$mu_sel
modelset_matrix = cAIC_model_set$modelset_matrix
x_beta_lin_com = cAIC_model_set$X_cluster_full
# Post-cAIC CI for mixed and fixed parameters ------------------------------------
postcAIC_CI_results = postcAIC_CI(
cAIC_min,
degcAIC_models,
X_full,
X_cluster_full,
sig_u_full,
sig_e_full,
model = "NERM",
clusterID,
beta_sel,
mu_sel,
modelset_matrix,
x_beta_lin_com = NULL )
plot(postcAIC_CI_results)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.