Description Usage Arguments Details Value Examples
View source: R/compute_information_criteria.R
Function compute_infromation_criteria
provides
mAIC, cAIC and mBIC for NERM
1 2 3 4 5 6 7 8 9 10 | compute_information_criteria(
X,
y,
clusterID,
model,
sig_u,
sig_e,
fit_model_fixed,
fit_model_mixed
)
|
X |
Matrix with covariates for fixed effects |
y |
Vector of responses |
clusterID |
Vector with cluster labels |
model |
Type of mixed model: NERM, FHM, RIRS (random slopes and random intercepts) |
sig_u |
Variance parameter of random effects |
sig_e |
Variance parameter of errors |
fit_model_fixed |
Estimated model using fixed effects |
fit_model_mixed |
Estimated model using fixed and random effects |
Penalty term in cAIC depends on the model selected.
Function compute_information_criteria
is simplified
because for now only NERM is supported.
List with information criteria:
mAIC |
Marginal AIC |
mBIC |
Marginal BIC |
cAIC |
Conditional AIC |
deg_cAIC |
Penalty of conditional AIC |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | n = 10
m_i = 5
m_total = 50
clusterID = rep(1:n, m_i)
p = 10
beta = rep(2, p)
u_i = rnorm(n, 0, 2)
u_i_aug = rep(u_i, each = m_i)
X = matrix(rnorm(m_total * p), m_total, p)
y = X%*%beta + u_i_aug + rnorm(m_total, 0, 1)
fit <- estimate_NERM(X, y, clusterID)
IC <- compute_information_criteria(X = X, y = y,
clusterID = clusterID,
model = "NERM",
sig_u = fit$sig_u,
sig_e = fit$sig_e,
fit_model_fixed = fit$fit_model_fixed,
fit_model_mixed = fit$fit_model_mixed)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.