This package pools together information from different databases and APIs in order to annotate SNPs and genes. In particular this uses databases by:
To install:
devtools::install_github("KatrionaGoldmann/omicAnnotations")
First, if you want to include associated diseases from disGeNET you will need to get an api_key. To get this sign up and get your API key either from the API directly or run:
api_key <- get_api_key(email="your email", password="your password")
For example for the entire gene summary:
gene_df <- gene_summary(genes=c("MS4A1", "FMOD", "FGF1", "SLAMF6"),
diseases="C20",
disease_api_token=api_key)
## [1] "Annotating from self-curated data..."
## [1] "Getting gene summaries..."
## [1] "Finding associated diseases..."
gene_df <- gene_df[, c("Gene", "description", "summary", "Associated_diseases")]
kable(gene_df, format = "markdown", row.names = FALSE)
Gene
description
summary
Associated_diseases
MS4A1
membrane spanning 4-domains A1
This gene encodes a member of the membrane-spanning 4A gene family. Members of this nascent protein family are characterized by common structural features and similar intron/exon splice boundaries and display unique expression patterns among hematopoietic cells and nonlymphoid tissues. This gene encodes a B-lymphocyte surface molecule which plays a role in the development and differentiation of B-cells into plasma cells. This family member is localized to 11q12, among a cluster of family members. Alternative splicing of this gene results in two transcript variants which encode the same protein. [provided by RefSeq, Jul 2008]
Common Variable Immunodeficiency; Acquired Hypogammaglobulinemia; Immunoglobulin Deficiency, Late-Onset
FMOD
fibromodulin
Fibromodulin belongs to the family of small interstitial proteoglycans. The encoded protein possesses a central region containing leucine-rich repeats with 4 keratan sulfate chains, flanked by terminal domains containing disulphide bonds. Owing to the interaction with type I and type II collagen fibrils and in vitro inhibition of fibrillogenesis, the encoded protein may play a role in the assembly of extracellular matrix. It may also regulate TGF-beta activities by sequestering TGF-beta into the extracellular matrix. Sequence variations in this gene may be associated with the pathogenesis of high myopia. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jun 2013]
FGF1
fibroblast growth factor 1
The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion. This protein functions as a modifier of endothelial cell migration and proliferation, as well as an angiogenic factor. It acts as a mitogen for a variety of mesoderm- and neuroectoderm-derived cells in vitro, thus is thought to be involved in organogenesis. Multiple alternatively spliced variants encoding different isoforms have been described. [provided by RefSeq, Jan 2009]
SLAMF6
SLAM family member 6
The protein encoded by this gene is a type I transmembrane protein, belonging to the CD2 subfamily of the immunoglobulin superfamily. This encoded protein is expressed on Natural killer (NK), T, and B lymphocytes. It undergoes tyrosine phosphorylation and associates with the Src homology 2 domain-containing protein (SH2D1A) as well as with SH2 domain-containing phosphatases (SHPs). It functions as a coreceptor in the process of NK cell activation. It can also mediate inhibitory signals in NK cells from X-linked lymphoproliferative patients. Alternative splicing results in multiple transcript variants encoding distinct isoforms.[provided by RefSeq, May 2010]
You can check for publications focusing on genes with given terms.
Either using associated_publications
:
gene_pubs <- associated_publications(genes=c("FGF1"),
keywords=c("rheumatoid"),
split="OR",
verbose=TRUE)
kable(gene_pubs, format = "markdown", row.names=FALSE)
Gene
Publications
FGF1
The transcriptomic profiling of SARS-CoV-2 compared to SARS, MERS, EBOV, and H1N1.; sICAM-1 as potential additional parameter in the discrimination of the Sjögren syndrome and non-autoimmune sicca syndrome: a pilot study.; [Effects of Huatan Tongluo Recipe on IL-1β-induced Proliferation of Rheumatoid Arthritis Synovial Fibroblasts and the Production of TNF-α and aFGF].; Fibroblast growth factors, fibroblast growth factor receptors, diseases, and drugs.; VEGF, FGF1, FGF2 and EGF gene polymorphisms and psoriatic arthritis.; Transcription factor Ets-1 regulates fibroblast growth factor-1-mediated angiogenesis in vivo: role of Ets-1 in the regulation of the PI3K/AKT/MMP-1 pathway.; Induction of RANKL expression and osteoclast maturation by the binding of fibroblast growth factor 2 to heparan sulfate proteoglycan on rheumatoid synovial fibroblasts.; Acidic fibroblast growth factor in synovial cells.; Characterization of tissue outgrowth developed in vitro in patients with rheumatoid arthritis: involvement of T cells in the development of tissue outgrowth.; Fibroblast growth factor-1 (FGF-1) enhances IL-2 production and nuclear translocation of NF-kappaB in FGF receptor-bearing Jurkat T cells.; A novel in vitro assay for human angiogenesis.; Expression and functional expansion of fibroblast growth factor receptor T cells in rheumatoid synovium and peripheral blood of patients with rheumatoid arthritis.; Detection of T cells responsive to a vascular growth factor in rheumatoid arthritis.; Coexpression of phosphotyrosine-containing proteins, platelet-derived growth factor-B, and fibroblast growth factor-1 in situ in synovial tissues of patients with rheumatoid arthritis and Lewis rats with adjuvant or streptococcal cell wall arthritis.; Platelet-derived growth factors and heparin-binding (fibroblast) growth factors in the synovial tissue pathology of rheumatoid arthritis.; Fibroblast growth factors: from genes to clinical applications.; Production of platelet derived growth factor B chain (PDGF-B/c-sis) mRNA and immunoreactive PDGF B-like polypeptide by rheumatoid synovium: coexpression with heparin binding acidic fibroblast growth factor-1.; Detection of high levels of heparin binding growth factor-1 (acidic fibroblast growth factor) in inflammatory arthritic joints.
Or gene_summary
:
gene_df <- gene_summary(genes=c("FGF1"),
associated_diseases =FALSE,
gene_description=FALSE,
publications = TRUE)
## [1] "Annotating from self-curated data..."
## [1] "Getting publications from PubMed..."
kable(gene_df, format = "markdown", row.names=FALSE)
Gene
Type
Curated_description
Publications
FGF1
Fibroblast Growth Factors
FGF/FGFR Pathways in Multiple Sclerosis and in Its Disease Models.; The transcriptomic profiling of SARS-CoV-2 compared to SARS, MERS, EBOV, and H1N1.; sICAM-1 as potential additional parameter in the discrimination of the Sjögren syndrome and non-autoimmune sicca syndrome: a pilot study.; Oligodendroglial fibroblast growth factor receptor 1 gene targeting protects mice from experimental autoimmune encephalomyelitis through ERK/AKT phosphorylation.; [Effects of Huatan Tongluo Recipe on IL-1β-induced Proliferation of Rheumatoid Arthritis Synovial Fibroblasts and the Production of TNF-α and aFGF].; Dysregulation of pathways involved in the processing of cancer and microenvironment information in MCA + TPA transformed C3H/10T1/2 cells.; Fibroblast growth factors, fibroblast growth factor receptors, diseases, and drugs.; VEGF, FGF1, FGF2 and EGF gene polymorphisms and psoriatic arthritis.; Cutaneous gene expression by DNA microarray in murine sclerodermatous graft-versus-host disease, a model for human scleroderma.; Transcription factor Ets-1 regulates fibroblast growth factor-1-mediated angiogenesis in vivo: role of Ets-1 in the regulation of the PI3K/AKT/MMP-1 pathway.; Angiocidal effect of Cyclosporin A: a new therapeutic approach for pathogenic angiogenesis.; Induction of RANKL expression and osteoclast maturation by the binding of fibroblast growth factor 2 to heparan sulfate proteoglycan on rheumatoid synovial fibroblasts.; Acidic fibroblast growth factor in synovial cells.; Characterization of tissue outgrowth developed in vitro in patients with rheumatoid arthritis: involvement of T cells in the development of tissue outgrowth.; Lack of FGF-1 overexpression during autoimmune nephritis in the kidneys of MRL lpr/lpr mice.; Fibroblast growth factor-1 (FGF-1) enhances IL-2 production and nuclear translocation of NF-kappaB in FGF receptor-bearing Jurkat T cells.; Cloning and characterization of a novel upstream untranslated exon of the mouse Fgf-1 gene.; Cloning and characterization of the mouse Fgf-1 gene.; A novel in vitro assay for human angiogenesis.; Expression and functional expansion of fibroblast growth factor receptor T cells in rheumatoid synovium and peripheral blood of patients with rheumatoid arthritis.; Environmental influences on fatty acid composition of membranes from autoimmune MRL lpr/lpr mice.; Costimulation of human CD4+ T cells by fibroblast growth factor-1 (acidic fibroblast growth factor).; Detection of T cells responsive to a vascular growth factor in rheumatoid arthritis.; Coexpression of phosphotyrosine-containing proteins, platelet-derived growth factor-B, and fibroblast growth factor-1 in situ in synovial tissues of patients with rheumatoid arthritis and Lewis rats with adjuvant or streptococcal cell wall arthritis.; Platelet-derived growth factors and heparin-binding (fibroblast) growth factors in the synovial tissue pathology of rheumatoid arthritis.; Fibroblast growth factors: from genes to clinical applications.; Production of platelet derived growth factor B chain (PDGF-B/c-sis) mRNA and immunoreactive PDGF B-like polypeptide by rheumatoid synovium: coexpression with heparin binding acidic fibroblast growth factor-1.; Detection of high levels of heparin binding growth factor-1 (acidic fibroblast growth factor) in inflammatory arthritic joints.
Looks for enriched pathways with gene sets using enrichR.
lymphoid_pathways <- enriched_pathways(
genes=c("LAMP5", "LINC01480", "FAM92B", "SLAMF6", "CEP128",
"FKBP11", "CRTAM", "ISG20", "ZBP1", "TMEM229B",
"FAM46C", "XBP1", "APOBEC3G", "TNIK", "CD2", "SP140",
"ACOXL", "PTPRCAP", "PDCD1", "KCNN3", "GZMK",
"IGFLR1", "SH2D2A", "PIM2", "TPST2"),
libraries = c('Pathways'),
dbs=NULL,
check_for_updates = FALSE)
If that doesn’t work it may be because the website is down. This happens occasionally. You can check by using:
listEnrichrDbs()
Plots
lymphoid_pathways$plot
eqtl_table <- associated_eqtl(genes=c("ENSG00000164308"), p_cutoff=1)
## [1] "Looking at SNPs"
## [1] "Looking at Genes"
kable(eqtl_table, row.names=F)
rsid
chromosome
molecular\_trait\_id
gene\_id
tissue
qtl\_group
pvalue
neg\_log10\_pvalue
se
beta
median\_tpm
study\_id
type
alt
position
ac
maf
variant
ref
r2
an
rs57584041
5
ENSG00000164308
ENSG00000164308
CL\_0000235
macrophage\_IFNg
0.142464
0.8462949
0.862435
1.2793100
14.576
Alasoo\_2018
SNP
C
95877044
5
0.0297619
chr5\_95877044\_T\_C
T
0.87667
168
rs6556892
5
ENSG00000164308
ENSG00000164308
CL\_0000235
macrophage\_IFNg
0.299611
0.5234422
0.338419
0.3536530
14.576
Alasoo\_2018
SNP
A
95878071
56
0.3333330
chr5\_95878071\_C\_A
C
0.92606
168
rs55763081
5
ENSG00000164308
ENSG00000164308
CL\_0000235
macrophage\_IFNg
0.324924
0.4882182
1.103560
-1.0940300
14.576
Alasoo\_2018
SNP
G
95876702
3
0.0178571
chr5\_95876702\_A\_G
A
0.81827
168
rs61540882
5
ENSG00000164308
ENSG00000164308
CL\_0000235
macrophage\_IFNg
0.325028
0.4880792
1.103460
-1.0936900
14.576
Alasoo\_2018
INDEL
T
95876577
3
0.0178571
chr5\_95876577\_TAAA\_T
TAAA
0.81754
168
rs796285486
5
ENSG00000164308
ENSG00000164308
CL\_0000235
macrophage\_IFNg
0.325028
0.4880792
1.103460
-1.0936900
14.576
Alasoo\_2018
INDEL
T
95876577
3
0.0178571
chr5\_95876577\_TAAA\_T
TAAA
0.81754
168
rs154457
5
ENSG00000164308
ENSG00000164308
CL\_0000235
macrophage\_IFNg
0.347034
0.4596280
0.376044
0.3560110
14.576
Alasoo\_2018
SNP
A
95876181
130
0.2261900
chr5\_95876181\_G\_A
G
0.93729
168
rs154458
5
ENSG00000164308
ENSG00000164308
CL\_0000235
macrophage\_IFNg
0.354738
0.4500923
0.375816
0.3501150
14.576
Alasoo\_2018
SNP
T
95876288
130
0.2261900
chr5\_95876288\_C\_T
C
0.94067
168
rs154456
5
ENSG00000164308
ENSG00000164308
CL\_0000235
macrophage\_IFNg
0.355252
0.4494635
0.375702
0.3496330
14.576
Alasoo\_2018
SNP
T
95876161
130
0.2261900
chr5\_95876161\_A\_T
A
0.94121
168
rs144088066
5
ENSG00000164308
ENSG00000164308
CL\_0000235
macrophage\_IFNg
0.358421
0.4456066
1.143510
-1.0571400
14.576
Alasoo\_2018
INDEL
C
95878406
3
0.0178571
chr5\_95878406\_CTCT\_C
CTCT
0.74292
168
rs17085223
5
ENSG00000164308
ENSG00000164308
CL\_0000235
macrophage\_IFNg
0.363755
0.4391910
1.139710
-1.0419100
14.576
Alasoo\_2018
SNP
T
95877713
3
0.0178571
chr5\_95877713\_G\_T
G
0.77062
168
rs113842599
5
ENSG00000164308
ENSG00000164308
CL\_0000235
macrophage\_IFNg
0.402339
0.3954079
1.153880
-0.9722280
14.576
Alasoo\_2018
SNP
G
95878112
3
0.0178571
chr5\_95878112\_C\_G
C
0.70249
168
rs749046156
5
ENSG00000164308
ENSG00000164308
CL\_0000235
macrophage\_IFNg
0.409355
0.3878999
0.958131
0.7952580
14.576
Alasoo\_2018
INDEL
GT
95877403
5
0.0297619
chr5\_95877403\_G\_GT
G
0.65265
168
rs397957177
5
ENSG00000164308
ENSG00000164308
CL\_0000235
macrophage\_IFNg
0.409355
0.3878999
0.958131
0.7952580
14.576
Alasoo\_2018
INDEL
GT
95877403
5
0.0297619
chr5\_95877403\_G\_GT
G
0.65265
168
rs1256088833
5
ENSG00000164308
ENSG00000164308
CL\_0000235
macrophage\_IFNg
0.482832
0.3162040
1.163830
-0.8210970
14.576
Alasoo\_2018
INDEL
G
95877403
2
0.0119048
chr5\_95877403\_GT\_G
GT
0.58191
168
rs111471052
5
ENSG00000164308
ENSG00000164308
CL\_0000235
macrophage\_IFNg
0.482832
0.3162040
1.163830
-0.8210970
14.576
Alasoo\_2018
INDEL
G
95877403
2
0.0119048
chr5\_95877403\_GT\_G
GT
0.58191
168
rs154454
5
ENSG00000164308
ENSG00000164308
CL\_0000235
macrophage\_IFNg
0.537536
0.2695924
0.385196
0.2386650
14.576
Alasoo\_2018
SNP
G
95875943
133
0.2083330
chr5\_95875943\_C\_G
C
0.96320
168
rs11372327
5
ENSG00000164308
ENSG00000164308
CL\_0000235
macrophage\_IFNg
0.710863
0.1482141
0.818859
-0.3047850
14.576
Alasoo\_2018
INDEL
AC
95878741
162
0.0357143
chr5\_95878741\_A\_AC
A
0.91136
168
rs397998782
5
ENSG00000164308
ENSG00000164308
CL\_0000235
macrophage\_IFNg
0.710863
0.1482141
0.818859
-0.3047850
14.576
Alasoo\_2018
INDEL
AC
95878741
162
0.0357143
chr5\_95878741\_A\_AC
A
0.91136
168
rs154459
5
ENSG00000164308
ENSG00000164308
CL\_0000235
macrophage\_IFNg
0.738887
0.1314220
0.332555
-0.1112910
14.576
Alasoo\_2018
SNP
T
95876578
72
0.4285710
chr5\_95876578\_A\_T
A
0.94702
168
rs154455
5
ENSG00000164308
ENSG00000164308
CL\_0000235
macrophage\_IFNg
0.803819
0.0948417
0.335028
-0.0835397
14.576
Alasoo\_2018
SNP
T
95876057
74
0.4404760
chr5\_95876057\_C\_T
C
0.96802
168
omicAnnotations can also be used to find out more info about SNPs.
gwas_traits <- associated_traits(snps = c("rs2910686", "rs7329174"))
kable(gwas_traits, row.names = F)
SNPs
Associated\_traits
rs2910686
neutrophil count; ankylosing spondylitis; crohn’s disease; psoriasis;
sclerosing cholangitis; ulcerative colitis
rs7329174
systemic lupus erythematosus; crohn’s disease
eqtl_table <- associated_eqtl(snps = c("rs2910686", "rs7329174"),
p_cutoff = 0.05)
## [1] "Looking at SNPs"
## [1] "Looking at Genes"
kable(eqtl_table, row.names = F)
rsid
chromosome
molecular\_trait\_id
gene\_id
tissue
qtl\_group
pvalue
neg\_log10\_pvalue
se
beta
median\_tpm
study\_id
type
alt
position
ac
maf
variant
ref
r2
an
rs2910686
5
ENSG00000164308
ENSG00000164308
CL\_0000235
macrophage\_IFNg
0.0000000
32.033736
0.1084150
2.3491000
14.576
Alasoo\_2018
SNP
C
96916885
68
0.4047620
rs2910686
T
0.99787
168
rs2910686
5
ENSG00000164308
ENSG00000164308
CL\_0000235
macrophage\_IFNg
0.0000000
28.094117
0.1188220
2.2120400
14.576
Alasoo\_2018
SNP
C
96916885
68
0.4047620
rs2910686
T
0.99787
168
rs2910686
5
ENSG00000164307
ENSG00000164307
CL\_0000235
macrophage\_IFNg
0.0001333
3.875124
0.0474250
-0.1917860
50.151
Alasoo\_2018
SNP
C
96916885
68
0.4047620
rs2910686
T
0.99787
168
rs7329174
13
ENSG00000102760
ENSG00000102760
UBERON\_0001013
adipose\_naive
0.0006357
3.196736
0.0714243
0.2470190
445.066
FUSION
SNP
G
40983974
38
0.0701107
rs7329174
A
1.00000
542
rs2910686
5
ENSG00000247121
ENSG00000247121
CL\_0000235
macrophage\_IFNg
0.0007469
3.126725
0.0779628
-0.2749620
1.260
Alasoo\_2018
SNP
C
96916885
68
0.4047620
rs2910686
T
0.99787
168
rs2910686
5
ENSG00000164307
ENSG00000164307
CL\_0000235
macrophage\_IFNg
0.0008048
3.094338
0.0611752
-0.2143270
50.151
Alasoo\_2018
SNP
C
96916885
68
0.4047620
rs2910686
T
0.99787
168
rs2910686
5
ENSG00000113441
ENSG00000113441
CL\_0000235
macrophage\_IFNg
0.0012984
2.886608
0.0291856
0.0978188
14.738
Alasoo\_2018
SNP
C
96916885
68
0.4047620
rs2910686
T
0.99787
168
rs7329174
13
ENSG00000278390
ENSG00000278390
UBERON\_0009834
brain
0.0053281
2.273430
0.0627828
-0.1757720
3.801
BrainSeq
SNP
G
40983974
39
0.0407098
rs7329174
A
0.93510
958
rs7329174
13
ENSG00000102743
ENSG00000102743
UBERON\_0001013
adipose\_naive
0.0291754
1.534983
0.0500392
-0.1097560
3.886
FUSION
SNP
G
40983974
38
0.0701107
rs7329174
A
1.00000
542
rs2910686
5
ENSG00000113441
ENSG00000113441
CL\_0000235
macrophage\_naive
0.0482241
1.316736
0.0258004
0.0518735
14.738
Alasoo\_2018
SNP
C
96916885
68
0.4047620
rs2910686
T
0.99787
168
g2s <- data.frame("Genes"=c("ERAP2", "ERAP2", "HLA-DRB9"),
"Snps"=c("chr5_96916728_G_A", "chr5_96916885_T_C",
"chr6_32620055_A_G"))
df <- gtex_eqtl(gene_snp_pairs = g2s)
library(ComplexHeatmap)
hm <- gtex_heatmap(df)
draw(hm, heatmap_legend_side = "left")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.