Description Usage Arguments Details Value Author(s) References See Also Examples
View source: R/plot.coxph_mpl_dc.R
Plot the baseline hazard with the confidence interval estimates
1 2 3 4 5 6 7 8 9 10 11 |
x |
an object inheriting from class |
parameter |
the set of parameters of interest. Indicate |
funtype |
the type of function for ploting, i.e. |
xout |
the time values for the baseline hazard plot |
se |
se=TRUE gives both the MPL baseline estimates and 95% confidence interval plots while se=FALSE gives only the MPL baseline estimate plot. |
ltys |
a line type vector with two components, the first component is the line type of the baseline hazard while the second component is the line type of the 95% confidence interval |
cols |
a colour vector with two components, the first component is the colour of the baseline hazard while the second component is the colour the 95% confidence interval |
... |
other arguments |
When the input is of class coxph_mpl_dc
and parameters=="theta"
, the baseline estimates
base on θ and xout (with the corresponding 95% confidence interval if se=TRUE ) are ploted.
When the input is of class coxph_mpl_dc
and parameters=="gamma"
, the baseline hazard estimates
based on γ and xout (with the corresponding 95% confidence interval if se=TRUE ) are ploted.
the baseline hazard plot
Jing Xu, Jun Ma, Thomas Fung
Brodaty H, Connors M, Xu J, Woodward M, Ames D. (2014). "Predictors of institutionalization in dementia: a three year longitudinal study". Journal of Alzheimers Disease 40, 221-226.
Xu J, Ma J, Connors MH, Brodaty H. (2018). "Proportional hazard model estimation under dependent censoring using copulas and penalized likelihood". Statistics in Medicine 37, 2238–2251.
coef.coxph_mpl_dc
, coxph_mpl_dc.control
, coxph_mpl_dc
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | ##-- Copula types
copula3 <- 'frank'
##-- A real example
##-- One dataset from Prospective Research in Memory Clinics (PRIME) study
##-- Refer to article Brodaty et al (2014),
## the predictors of institutionalization of dementia patients over 3-year study period
data(PRIME)
surv<-as.matrix(PRIME[,1:3]) #time, event and dependent censoring indicators
cova<-as.matrix(PRIME[, -c(1:3)]) #covariates
colMeans(surv[,2:3]) #the proportions of event and dependent censoring
n<-dim(PRIME)[1];print(n)
p<-dim(PRIME)[2]-3;print(p)
names(PRIME)
##--MPL estimate Cox proportional hazard model for institutionalization under medium positive
##--dependent censoring
control <- coxph_mpl_dc.control(ordSp = 4,
binCount = 200, tie = 'Yes',
tau = 0.5, copula = copula3,
pent = 'penalty_mspl', smpart = 'REML',
penc = 'penalty_mspl', smparc = 'REML',
cat.smpar = 'No' )
coxMPLests_tau <- coxph_mpl_dc(surv=surv, cova=cova, control=control, )
plot(x = coxMPLests_tau, parameter = "theta", funtype="hazard",
xout = seq(0, 36, 0.01), se = TRUE,
cols=c("blue", "red"), ltys=c(1, 2), type="l", lwd=1, cex=1, cex.axis=1, cex.lab=1,
xlab="Time (Month)", ylab="Hazard",
xlim=c(0, 36), ylim=c(0, 0.05)
)
title("MPL Hazard", cex.main=1)
legend( 'topleft',legend = c( expression(tau==0.5), "95% Confidence Interval"),
col = c("blue", "red"),
lty = c(1, 2),
cex = 1)
plot(x = coxMPLests_tau, parameter = "theta", funtype="cumhazard",
xout = seq(0, 36, 0.01), se = TRUE,
cols=c("blue", "red"), ltys=c(1, 2),
type="l", lwd=1, cex=1, cex.axis=1, cex.lab=1,
xlab="Time (Month)", ylab="Hazard",
xlim=c(0, 36), ylim=c(0, 1.2)
)
title("MPL Cumulative Hazard", cex.main=1)
legend( 'topleft',
legend = c( expression(tau==0.5), "95% Confidence Interval"),
col = c("blue", "red"),
lty = c(1, 2),
cex = 1
)
plot(x = coxMPLests_tau, parameter = "theta", funtype="survival",
xout = seq(0, 36, 0.01), se = TRUE,
cols=c("blue", "red"), ltys=c(1, 2),
type="l", lwd=1, cex=1, cex.axis=1, cex.lab=1,
xlab="Time (Month)", ylab="Hazard",
xlim=c(0, 36), ylim=c(0, 1)
)
title("MPL Survival", cex.main=1)
legend( 'bottomleft',
legend = c( expression(tau==0.5), "95% Confidence Interval"),
col = c("blue", "red"),
lty = c(1, 2),
cex = 1
)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.