R/jc.probs2.r

Defines functions jc.probs2

Documented in jc.probs2

jc.probs2 <- function(x, y1, y2, newdata, type, cond, intervals, n.sim, prob.lev, cont1par, cont2par, cont3par, bin.link, min.pr, max.pr){

nu1 <- nu2 <- nu <- sigma2 <- 1
CIp12 <- NULL
CIkt <- tau <- NULL
CLM.shift <- CLM.shift2 <- 0
dof <- x$dof

p12s <- NULL








if(type == "joint"){


if(!missing(newdata)){

nu <- sigma2 <- NA

p1   <- predict.SemiParBIV(x, eq = 1, newdata = newdata, type = "response")
eta2 <- predict.SemiParBIV(x, eq = 2, newdata = newdata)



###############
if(!is.null(x$VC$K1)){
 
 p1 <- seq(0.001, 0.999, length.out = dim(newdata)[1])  # this is a trick/cheat and will have to be fixed properly

}
###############

if( !is.null(x$X3) && x$margins[2] %in% c(cont2par,cont3par) ){

sigma2 <- esp.tr(predict.SemiParBIV(x, eq = 3, newdata = newdata), x$margins[2])$vrb

if(x$margins[2] %in% cont2par) eq.th <- 4
if(x$margins[2] %in% cont3par){ eq.nu <- 4; eq.th <- 5}

if(x$margins[2] %in% cont3par) nu <- enu.tr(predict.SemiParBIV(x, eq = eq.nu, newdata = newdata), x$margins[2])$vrb

theta <- teta.tr(x$VC, predict.SemiParBIV(x, eq = eq.th, newdata = newdata))$teta

}


# new part for discrete
if( !is.null(x$X3) && x$margins[2] %in% cont1par ) theta <- teta.tr(x$VC, predict.SemiParBIV(x, eq = 3, newdata = newdata))$teta




if( is.null(x$X3) ){

sigma2 <- x$sigma2
nu     <- x$nu 
theta  <- x$theta 

}


}



if(missing(newdata)){

p1   <- x$p1
eta2 <- x$eta2

sigma2 <- x$sigma2
nu     <- x$nu 
theta  <- x$theta 

}




if((cond == 0 && x$margins[2] %in% c(x$VC$m2, x$VC$m3)) || (cond == 1 && x$margins[2] %in% c(x$VC$m2, x$VC$m3))){#*# bin - cont



p0  <- 1 - p1         
p2  <- distrHsAT(y2, eta2, sigma2, nu, x$margins[2], min.dn = min.pr, min.pr = min.pr, max.pr = max.pr)$p2

if(!(x$BivD %in% x$BivD2)) p12 <- mm(BiCDF(p0, p2, x$nC, theta, dof), min.pr = min.pr, max.pr = max.pr  )

if(x$BivD %in% x$BivD2){

nC1 <- x$VC$ct[which(x$VC$ct[,1] == x$Cop1),2] 
nC2 <- x$VC$ct[which(x$VC$ct[,1] == x$Cop2),2]

p12 <- NA

if( length(x$teta1) != 0){
if(length(theta) > 1)  p12[x$teta.ind1] <- mm(BiCDF(p0[x$teta.ind1], p2[x$teta.ind1], nC1, theta[x$teta.ind1], dof), min.pr = min.pr, max.pr = max.pr  )
if(length(theta) == 1) p12[x$teta.ind1] <- mm(BiCDF(p0[x$teta.ind1], p2[x$teta.ind1], nC1, theta, dof), min.pr = min.pr, max.pr = max.pr  )
                          }
                       
if( length(x$teta2) != 0){
if(length(theta) > 1)  p12[x$teta.ind2] <- mm(BiCDF(p0[x$teta.ind2], p2[x$teta.ind2], nC2, theta[x$teta.ind2], dof), min.pr = min.pr, max.pr = max.pr  )
if(length(theta) == 1) p12[x$teta.ind2] <- mm(BiCDF(p0[x$teta.ind2], p2[x$teta.ind2], nC2, theta, dof), min.pr = min.pr, max.pr = max.pr  )
                          }                       

}


if(cond == 1 && y1 == 0) p12 <- p12/p0

                      

if(y1 == 1){                         ### joint prob of y1=1 and y2=x ###

p12  <- p2 - p12

if(cond == 1) p12 <- p12/p1

           }
                      
}#*#





if(cond == 2 && x$margins[2] %in% c(x$VC$m2, x$VC$m3)){#*# bin - cont


p0  <- 1 - p1         
p2  <- distrHsAT(y2, eta2, sigma2, nu, x$margins[2], min.dn = min.pr, min.pr = min.pr, max.pr = max.pr)$p2


if(!(x$BivD %in% x$BivD2)) p12 <- copgHsCond(p0, p2, theta, dof = dof, x$BivD, min.pr = min.pr, max.pr = max.pr)$c.copula.be2


if(x$BivD %in% x$BivD2){

p12 <- NA
 
if( length(x$teta1) != 0){
if(length(theta) > 1)  p12[x$teta.ind1] <- copgHsCond(p0[x$teta.ind1], p2[x$teta.ind1], theta[x$teta.ind1], dof = dof, x$Cop1, min.pr = min.pr, max.pr = max.pr)$c.copula.be2
if(length(theta) == 1) p12[x$teta.ind1] <- copgHsCond(p0[x$teta.ind1], p2[x$teta.ind1], theta, dof = dof, x$Cop1, min.pr = min.pr, max.pr = max.pr)$c.copula.be2
                         }  
                          
if( length(x$teta2) != 0){
if(length(theta) > 1)  p12[x$teta.ind2] <- copgHsCond(p0[x$teta.ind2], p2[x$teta.ind2], theta[x$teta.ind2], dof = dof, x$Cop2, min.pr = min.pr, max.pr = max.pr)$c.copula.be2
if(length(theta) == 1) p12[x$teta.ind2] <- copgHsCond(p0[x$teta.ind2], p2[x$teta.ind2], theta, dof = dof, x$Cop2, min.pr = min.pr, max.pr = max.pr)$c.copula.be2
                         }                            
                                                                           
                       }

if(y1 == 1) p12  <- 1 - p12 ### y1=1 | y2=x ###

                   
}#*#









if(x$margins[2] %in% c(x$VC$m2d, x$VC$m1d)){#*# bin - discr

p0   <- 1 - p1
ppdf <- distrHsATDiscr(y2, eta2, sigma2, nu = 1, x$margins[2], x$VC$y2m, min.dn = min.pr, min.pr = min.pr, max.pr = max.pr)
p2   <- ppdf$p2 
pdf2 <- ppdf$pdf2


if(x$BivD %in% x$BivD2){

nC1 <- x$VC$ct[which(x$VC$ct[,1] == x$Cop1),2] 
nC2 <- x$VC$ct[which(x$VC$ct[,1] == x$Cop2),2]

C1 <- C2 <- NA

if( length(x$teta1) != 0){

if(length(theta) > 1){
C1[x$teta.ind1] <- mm(BiCDF(p0[x$teta.ind1], p2[x$teta.ind1],          nC1, theta[x$teta.ind1], dof), min.pr = min.pr, max.pr = max.pr  )
C2[x$teta.ind1] <- mm(BiCDF(p0[x$teta.ind1], mm(p2[x$teta.ind1]-pdf2[x$teta.ind1], min.pr, max.pr), nC1, theta[x$teta.ind1], dof), min.pr = min.pr, max.pr = max.pr  )
                     }

if(length(theta) == 1){
C1[x$teta.ind1] <- mm(BiCDF(p0[x$teta.ind1], p2[x$teta.ind1],          nC1, theta, dof), min.pr = min.pr, max.pr = max.pr  )
C2[x$teta.ind1] <- mm(BiCDF(p0[x$teta.ind1], mm(p2[x$teta.ind1]-pdf2[x$teta.ind1], min.pr, max.pr), nC1, theta, dof), min.pr = min.pr, max.pr = max.pr  )
                       }

                          }
                       
                       
                       
if( length(x$teta2) != 0){

if(length(theta) > 1){
C1[x$teta.ind2] <- mm(BiCDF(p0[x$teta.ind2], p2[x$teta.ind2],          nC2, theta[x$teta.ind2], dof), min.pr = min.pr, max.pr = max.pr  )
C2[x$teta.ind2] <- mm(BiCDF(p0[x$teta.ind2], mm(p2[x$teta.ind2]-pdf2[x$teta.ind2], min.pr, max.pr), nC2, theta[x$teta.ind2], dof), min.pr = min.pr, max.pr = max.pr  )
                     }

if(length(theta) == 1){
C1[x$teta.ind2] <- mm(BiCDF(p0[x$teta.ind2], p2[x$teta.ind2],          nC2, theta, dof), min.pr = min.pr, max.pr = max.pr  )
C2[x$teta.ind2] <- mm(BiCDF(p0[x$teta.ind2], mm(p2[x$teta.ind2]-pdf2[x$teta.ind2], min.pr, max.pr), nC2, theta, dof), min.pr = min.pr, max.pr = max.pr  )
                       }

                          }                       

}



if(!(x$BivD %in% x$BivD2)){

C1 <- mm(BiCDF(p0, p2,          x$nC, theta, dof), min.pr = min.pr, max.pr = max.pr  )
C2 <- mm(BiCDF(p0, mm(p2-pdf2, min.pr, max.pr), x$nC, theta, dof), min.pr = min.pr, max.pr = max.pr  )

}



A <- ifelse(C1 - C2 < min.pr, min.pr, C1 - C2)

if(y1 == 0){

p12 <- A
if(cond == 1) p12 <- p12/p0
if(cond == 2) p12 <- p12/pdf2

          }

if(y1 == 1){

p12 <- ifelse( pdf2 - A < min.pr, min.pr, pdf2 - A)
if(cond == 1) p12 <- p12/p1
if(cond == 2) p12 <- p12/pdf2

           }
 
 
 
 
 
 

 
 
}#*#








# kendalls' tau

if(x$BivD %in% x$BivD2)    {x$SemiParFit <- x; tau <- Reg2Copost(x$SemiParFit, x$VC, theta)$tau} 
if(!(x$BivD %in% x$BivD2)) tau <- ass.ms(x$VC$BivD, x$VC$nCa, theta)$tau 



           
           
if(intervals == TRUE){

bs <- rMVN(n.sim, mean = x$coefficients, sigma = x$Vb)  

#############  
# etas
############# 

if(!missing(newdata)){ X1  <- predict.SemiParBIV(x, eq = 1, newdata = newdata, type = "lpmatrix") 


###############
if(!is.null(x$VC$K1)){
 
 X1 <- matrix(1, dim(newdata)[1], x$X1.d2) # this is a trick/cheat and will have to be fixed properly

}
###############




                       X2s <- predict.SemiParBIV(x, eq = 2, newdata = newdata, type = "lpmatrix") }
                       
if( missing(newdata)){ X1 <- x$X1 
                       if(x$VC$ccss == "yes") X2s <- x$X2s else X2s <- x$X2  
                       }  


p1s   <- probm( X1%*%t(bs[,1:x$X1.d2]), x$VC$margins[1], min.dn = min.pr, min.pr = min.pr, max.pr = max.pr)$pr 
eta2s <- eta.tr( X2s%*%t(bs[,(x$X1.d2+1):(x$X1.d2+x$X2.d2)]) , x$VC$margins[2])

#############  
# thetas
#############  

if( is.null(x$X3) ) epds <- bs[,length(x$coefficients)]
  
if( !is.null(x$X3) ){ 


  if(x$VC$margins[2] %in% cont1par){   
  
  
if(!missing(newdata)){ X3s <- predict.SemiParBIV(x, eq = 3, newdata = newdata, type = "lpmatrix")}
                       
if( missing(newdata)){ if(x$VC$ccss == "yes") X3s <- x$X3s else X3s <- x$X3}    
  
                epds <- X3s%*%t(bs[,(x$X1.d2+x$X2.d2+1):(x$X1.d2+x$X2.d2+x$X3.d2)])
  
                                   }


  if(x$VC$margins[2] %in% cont2par){   
  
  
  

if (!is.null(x$VC$K1)) {
    
        K1  <- x$VC$K1
	CLM.shift  <- K1 - 2
	CLM.shift2 <- CLM.shift + 1 # This is needed because in CopulaCLM the intercept has been already removed from X1.d2
} else {
	CLM.shift <- CLM.shift2 <- 0
}    
  
  
if(!missing(newdata)){ X4s <- predict.SemiParBIV(x, eq = 4, newdata = newdata, type = "lpmatrix")}
                       
if( missing(newdata)){ if(x$VC$ccss == "yes") X4s <- x$X4s else X4s <- x$X4}    
  
                epds <- X4s%*%t(bs[,(x$X1.d2+x$X2.d2+x$X3.d2+1+ CLM.shift2):(x$X1.d2+x$X2.d2+x$X3.d2+x$X4.d2+ CLM.shift2)])
  
                                   }
         
         
  if(x$VC$margins[2] %in% cont3par){
  
if(!missing(newdata)){ X5s <- predict.SemiParBIV(x, eq = 5, newdata = newdata, type = "lpmatrix")}
                       
if( missing(newdata)){ if(x$VC$ccss == "yes") X5s <- x$X5s else X5s <- x$X5}    
  
                epds <- X5s%*%t(bs[,(x$X1.d2+x$X2.d2+x$X3.d2+x$X4.d2+1):(x$X1.d2+x$X2.d2+x$X3.d2+x$X4.d2+x$X5.d2)])
                
                                   }
  
  
  
  }

est.RHOb <- teta.tr(x$VC, epds)$teta
   
#############  
# sigmas
#############  

if( x$VC$margins[2] %in% c(cont2par, cont3par)  ){  

      if( is.null(x$X3) )   sigma2.star <- bs[, x$X1.d2 + x$X2.d2 + 1] 
      if( !is.null(x$X3) ) {
      
if(!missing(newdata)){ X3s <- predict.SemiParBIV(x, eq = 3, newdata = newdata, type = "lpmatrix")}
                       
if( missing(newdata)){ if(x$VC$ccss == "yes") X3s <- x$X3s else X3s <- x$X3}        
                
            sigma2.star <- X3s%*%t(bs[,(x$X1.d2+x$X2.d2+1+ CLM.shift2):(x$X1.d2+x$X2.d2+x$X3.d2+ CLM.shift2)]) 
  
                           }
  
sigma2 <- esp.tr(sigma2.star, x$VC$margins[2])$vrb   
    
}    
    
#############  
# NUs
#############    
  
if( x$VC$margins[2] %in% cont3par ){  
    
  if( is.null(x$X3)  ) nu.st <- bs[, x$X1.d2 + x$X2.d2 + 2] # t(as.matrix(bs[,  x$X1.d2 + x$X2.d2 + 2]))
  if( !is.null(x$X3) ){
  
if(!missing(newdata)){ X4s <- predict.SemiParBIV(x, eq = 4, newdata = newdata, type = "lpmatrix")}                    
if( missing(newdata)){ if(x$VC$ccss == "yes") X4s <- x$X4s else X4s <- x$X4}    
  
              nu.st <- X4s%*%t(bs[,(x$X1.d2 + x$X2.d2 + x$X3.d2 + 1):(x$X1.d2 + x$X2.d2 + x$X3.d2 + x$X4.d2)]) 
  
                      }
  
 nu <- enu.tr(nu.st, x$VC$margins[2])$vrb   
  
} 


#################


if( is.null(x$X3) ){

est.RHOb <- matrix(rep(est.RHOb, each = dim(eta2s)[1]), ncol = n.sim, byrow=FALSE)
sigma2   <- matrix(rep(sigma2, each = dim(eta2s)[1]), ncol = n.sim, byrow=FALSE)
nu       <- matrix(rep(nu, each = dim(eta2s)[1]), ncol = n.sim, byrow=FALSE)

                   }




if((cond == 0 && x$margins[2] %in% c(x$VC$m2, x$VC$m3)) || (cond == 1 && x$margins[2] %in% c(x$VC$m2, x$VC$m3))){#*#

p0s  <- matrix(1 - p1s, dim(p1s)[1], n.sim)         
p2s  <- matrix( distrHsAT(y2, eta2s, sigma2, nu, x$margins[2], min.dn = min.pr, min.pr = min.pr, max.pr = max.pr)$p2 , dim(p1s)[1], n.sim)

if(x$VC$BivD %in% c("N","T")) p12s <- matrix(mm(BiCDF(p0s, p2s, x$nC, est.RHOb, dof, test = FALSE), min.pr = min.pr, max.pr = max.pr  ), dim(p1s)[1], n.sim) else{


if(x$BivD %in% x$BivD2){

p12s <- matrix(NA, ncol = n.sim, nrow = dim(p0s)[1])

if( length(x$teta1) != 0) p12s[x$teta.ind1,] <- mm(BiCDF(p0s[x$teta.ind1,], p2s[x$teta.ind1,], nC1,  est.RHOb[x$teta.ind1,]), min.pr = min.pr, max.pr = max.pr  )               
if( length(x$teta2) != 0) p12s[x$teta.ind2,] <- mm(BiCDF(p0s[x$teta.ind2,], p2s[x$teta.ind2,], nC2, -est.RHOb[x$teta.ind2,]), min.pr = min.pr, max.pr = max.pr  )
                      
                        }

if(!(x$BivD %in% x$BivD2)) p12s <- matrix( mm(BiCDF(p0s, p2s, x$nC, est.RHOb, dof, test = FALSE), min.pr = min.pr, max.pr = max.pr  ) , dim(p1s)[1], n.sim)


}

if(cond == 1 && y1 == 0) p12s <- p12s/p0s


if(y1 == 1){                         
  
p12s  <- p2s - p12s

if(cond == 1) p12s <- p12s/p1s

           }
 
}#*# 
 
 
 
if(cond == 2 && x$margins[2] %in% c(x$VC$m2, x$VC$m3)){#*# bin - cont

p0s  <- matrix( 1 - p1s , dim(p1s)[1], n.sim)        
p2s  <- matrix( distrHsAT(y2, eta2s, sigma2, nu, x$margins[2], min.dn = min.pr, min.pr = min.pr, max.pr = max.pr)$p2, dim(p1s)[1], n.sim)


if(!(x$BivD %in% x$BivD2)) p12s <- matrix( copgHsCond(p0s, p2s, est.RHOb, dof = dof, x$BivD, min.pr = min.pr, max.pr = max.pr)$c.copula.be2, dim(p1s)[1], n.sim)
         if(x$BivD == "T") p12s <- matrix(p12s, dim(p1s)[1], n.sim)


if(x$BivD %in% x$BivD2){

p12s <- matrix(NA, ncol = n.sim, nrow = dim(p1s)[1])
 
if( length(x$teta1) != 0) p12s[x$teta.ind1,] <- copgHsCond(p0s[x$teta.ind1,], p2s[x$teta.ind1,],  est.RHOb[x$teta.ind1,], dof = dof, x$Cop1, min.pr = min.pr, max.pr = max.pr)$c.copula.be2                                               
if( length(x$teta2) != 0) p12s[x$teta.ind2,] <- copgHsCond(p0s[x$teta.ind2,], p2s[x$teta.ind2,], -est.RHOb[x$teta.ind2,], dof = dof, x$Cop2, min.pr = min.pr, max.pr = max.pr)$c.copula.be2
                                                                                                     
                       }

if(y1 == 1) p12s <- 1 - p12s ### y1=1 | y2=x ###


}




 
 
 
 
if(x$margins[2] %in% c(x$VC$m2d, x$VC$m1d)){#*#

p0s   <- matrix( 1 - p1s , dim(p1s)[1], n.sim)
ppdf  <- distrHsATDiscr(y2, eta2s, sigma2, nu = 1, x$margins[2], x$VC$y2m, min.dn = min.pr, min.pr = min.pr, max.pr = max.pr) # not sure about y2m
p2s   <- matrix( ppdf$p2 ,  dim(p1s)[1], n.sim)
pdf2s <- matrix( ppdf$pdf2, dim(p1s)[1], n.sim)

if(x$VC$BivD %in% c("N","T")) C1s <- matrix(mm(BiCDF(p0s, p2s, x$nC, est.RHOb, dof, test = FALSE), min.pr = min.pr, max.pr = max.pr  ), dim(p1s)[1], n.sim) else{


if(x$BivD %in% x$BivD2){

C1s <- matrix(NA, ncol = n.sim, nrow = dim(p0s)[1])

if( length(x$teta1) != 0) C1s[x$teta.ind1,] <- mm(BiCDF(p0s[x$teta.ind1,], p2s[x$teta.ind1,], nC1,  est.RHOb[x$teta.ind1,]), min.pr = min.pr, max.pr = max.pr  )                  
if( length(x$teta2) != 0) C1s[x$teta.ind2,] <- mm(BiCDF(p0s[x$teta.ind2,], p2s[x$teta.ind2,], nC2, -est.RHOb[x$teta.ind2,]), min.pr = min.pr, max.pr = max.pr  )
                      
                        }

if(!(x$BivD %in% x$BivD2)) C1s <- matrix(mm(BiCDF(p0s, p2s, x$nC, est.RHOb, dof, test = FALSE), min.pr = min.pr, max.pr = max.pr  ), dim(p1s)[1], n.sim)



}



if(x$VC$BivD %in% c("N","T")) C2s <- matrix(mm(BiCDF(p0s, mm(p2s-pdf2s, min.pr, max.pr), x$nC, est.RHOb, dof, test = FALSE), min.pr = min.pr, max.pr = max.pr  ), dim(p1s)[1], n.sim) else{


if(x$BivD %in% x$BivD2){

C2s <- matrix(NA, ncol = n.sim, nrow = dim(p0s)[1])

if( length(x$teta1) != 0) C2s[x$teta.ind1,] <- mm(BiCDF(p0s[x$teta.ind1,], mm(p2s[x$teta.ind1,]-pdf2s[x$teta.ind1,], min.pr, max.pr), nC1,  est.RHOb[x$teta.ind1,]) , min.pr = min.pr, max.pr = max.pr  )                 
if( length(x$teta2) != 0) C2s[x$teta.ind2,] <- mm(BiCDF(p0s[x$teta.ind2,], mm(p2s[x$teta.ind2,]-pdf2s[x$teta.ind2,], min.pr, max.pr), nC2, -est.RHOb[x$teta.ind2,]), min.pr = min.pr, max.pr = max.pr  )
                      
                        }

if(!(x$BivD %in% x$BivD2)) C2s <- matrix( mm(BiCDF(p0s, mm(p2s-pdf2s, min.pr, max.pr), x$nC, est.RHOb, dof, test = FALSE), min.pr = min.pr, max.pr = max.pr  ), dim(p1s)[1], n.sim)


}




As <- ifelse(C1s - C2s < min.pr, min.pr, C1s - C2s)




if(y1 == 0){
p12s <- As
if(cond == 1) p12s <- p12s/p0s
if(cond == 2) p12s <- p12s/pdf2s
          }

if(y1 == 1){
p12s <- ifelse( pdf2s - As < min.pr, min.pr, pdf2s - As)
if(cond == 1) p12s <- p12s/p1s
if(cond == 2) p12s <- p12s/pdf2s
           }
       
}#*# 
 
   
   
   
   
   
   
   
   

nCa   <- x$VC$nCa
BivDt <- x$VC$BivD

  if(x$BivD %in% x$BivD2){
  
  if(x$BivD %in% x$BivD2[c(1:4,13:16)]) { BivDt <- "C0"; nCa <- 3} 
  if(x$BivD %in% x$BivD2[5:8]) { BivDt <- "J0"; nCa <- 6}
  if(x$BivD %in% x$BivD2[9:12]){ BivDt <- "G0"; nCa <- 4}
  
                         }
  
ass.msR <- ass.ms(BivDt, nCa, est.RHOb)
taus    <- ass.msR$tau
if(!is.null(x$X3) && BivDt %in% c("AMH", "FGM")) taus <- matrix(taus, nrow(x$X3), nrow(bs))
CIkt <- rowQuantiles(taus, probs = c(prob.lev/2,1-prob.lev/2), na.rm = TRUE)
#if( is.null(x$X3) ) CIkt <- t(CIkt) 



 if(x$BivD %in% x$BivD2){ 
 
   if(length(x$theta) > 1){
 
     if( length(x$teta2) != 0) CIkt[x$teta.ind2, ] <- -CIkt[x$teta.ind2, ]; CIkt[x$teta.ind2, c(1,2)] <- CIkt[x$teta.ind2, c(2,1)] 
                                 
                          }else{
 
     if( length(x$teta2) != 0) CIkt <- -CIkt; CIkt[, c(1,2)] <- CIkt[, c(2,1)]
                                 
                                }
 }

   
   
   
   
   
   

} # int




     
} # biv





###########################################
###########################################
###########################################


if(type == "independence"){ # this will not work for ordinal



if(!missing(newdata)){

nu     <- sigma2 <- NA
p1     <- probm(predict.SemiParBIV(x, eq = 1, newdata = newdata, type = "lpmatrix")%*%x$gam1$coefficients, x$VC$margins[1], min.dn = min.pr, min.pr = min.pr, max.pr = max.pr)$pr
eta2   <- predict.SemiParBIV(x, eq = 2, newdata = newdata, type = "lpmatrix")%*%x$gamlss$coefficients[1:x$X2.d2]



if( !(x$VC$margins[2] %in% cont1par) ){

if( !is.null(x$X3) ){

sigma2 <- esp.tr(predict.SemiParBIV(x, eq = 3, newdata = newdata, type = "lpmatrix")%*%x$gamlss$coefficients[(x$X2.d2+1):(x$X2.d2+x$X3.d2)], x$margins[2])$vrb
if(x$margins[2] %in% cont3par) nu <- enu.tr(predict.SemiParBIV(x, eq = 4, newdata = newdata, type = "lpmatrix")%*%x$gamlss$coefficients[(x$X2.d2 + x$X3.d2 + 1):(x$X2.d2 + x$X3.d2 + x$X4.d2)], x$margins[2])$vrb

                    }

if( is.null(x$X3) ){

sigma2 <- x$gamlss$sigma2
nu     <- x$gamlss$nu 

                   }


                                 }


}



if(missing(newdata)){

p1   <- probm(predict.SemiParBIV(x, eq = 1, type = "lpmatrix")%*%x$gam1$coefficients, x$VC$margins[1], min.dn = min.pr, min.pr = min.pr, max.pr = max.pr)$pr
eta2 <- x$gamlss$eta1

sigma2 <- x$gamlss$sigma2
nu     <- x$gamlss$nu 

}



if(x$margins[2] %in% c(x$VC$m2, x$VC$m3)){#*#

if(y1 == 0 || y1 == 1){  

p0  <- 1 - p1                     
p2  <- distrHsAT(y2, eta2, sigma2, nu, x$margins[2], min.dn = min.pr, min.pr = min.pr, max.pr = max.pr)$p2
p12 <- p0*p2

if(cond == 1) p12 <- p2
if(cond == 2) p12 <- p0

                      }

if(y1 == 1){                                          

p12 <- p1*p2 

if(cond == 1) p12 <- p2
if(cond == 2) p12 <- p1

           }
           
           
}  #*#         







if(x$margins[2] %in% c(x$VC$m2d, x$VC$m1d)){#*#

p0   <- 1 - p1
pdf2 <- distrHsATDiscr(y2, eta2, sigma2, nu = 1, x$margins[2], x$VC$y2m, min.dn = min.pr, min.pr = min.pr, max.pr = max.pr)$pdf2  

if(y1 == 0){
p12 <- p0*pdf2
if(cond == 1) p12 <- pdf2
if(cond == 2) p12 <- p0
          }

if(y1 == 1){
p12 <- p1*pdf2
if(cond == 1) p12 <- pdf2
if(cond == 2) p12 <- p1
           }
       
}#*#  







      
if(intervals == TRUE){


bs1 <- rMVN(n.sim, mean = x$gam1$coefficients, sigma=x$gam1$Vp)
bs2 <- rMVN(n.sim, mean = x$gamlss$coefficients, sigma=x$gamlss$Vb)


#############  
# etas
#############  

if(!missing(newdata)){ X1  <- predict.SemiParBIV(x, eq = 1, newdata = newdata, type = "lpmatrix") # this will not work for ordinal
                       X2s <- predict.SemiParBIV(x, eq = 2, newdata = newdata, type = "lpmatrix") }
                       
if( missing(newdata)){ X1 <- x$X1 
                       if(x$VC$ccss == "yes") X2s <- x$X2s else X2s <- x$X2  
                       } 
  
p1s   <- probm(   X1%*%t(bs1[,1:x$X1.d2]) , x$VC$margins[1], min.dn = min.pr, min.pr = min.pr, max.pr = max.pr)$pr   
eta2s <- eta.tr( X2s%*%t(bs2[,1:x$X2.d2]) , x$VC$margins[2])

#############  
# sigmas
#############  

if( x$VC$margins[2] %in% c(cont2par,cont3par) ){ 

      if( is.null(x$X3) )   sigma2.star <- bs2[, x$X2.d2 + 1] 
      
      if( !is.null(x$X3) ){
      
if(!missing(newdata)){ X3s <- predict.SemiParBIV(x, eq = 3, newdata = newdata, type = "lpmatrix")}                     
if( missing(newdata)){ if(x$VC$ccss == "yes") X3s <- x$X3s else X3s <- x$X3}        
      
                      sigma2.star <- X3s%*%t(bs2[,(x$X2.d2+1):(x$X2.d2+x$X3.d2)]) 

                          }

sigma2 <- esp.tr(sigma2.star, x$VC$margins[2])$vrb   
    
}    
    
#############  
# NUs
#############    
  
if( x$VC$margins[2] %in% cont3par ){  
    
  if( is.null(x$X3)  ) nu.st <- bs2[,  x$X2.d2 + 2] # t(as.matrix(bs2[,  x$X2.d2 + 2]))
  
  if( !is.null(x$X3) ){
  
if(!missing(newdata)){ X4s <- predict.SemiParBIV(x, eq = 4, newdata = newdata, type = "lpmatrix")}                      
if( missing(newdata)){ if(x$VC$ccss == "yes") X4s <- x$X4s else X4s <- x$X4}     
  
             nu.st <- X4s%*%t(bs2[,(x$X2.d2 + x$X3.d2 + 1):(x$X2.d2 + x$X3.d2 + x$X4.d2)]) 
                      }
                      
 nu <- enu.tr(nu.st, x$VC$margins[2])$vrb   
  
} 


#################


if( is.null(x$X3) ){

sigma2   <- matrix(rep(sigma2, each = dim(eta2s)[1]), ncol = n.sim, byrow=FALSE)
nu       <- matrix(rep(nu, each = dim(eta2s)[1]), ncol = n.sim, byrow=FALSE)

                   }



if(x$margins[2] %in% c(x$VC$m2, x$VC$m3)){#*#

if(y1 == 0 || y1 == 1){                              
p0s  <- matrix(1 - p1s, dim(p1s)[1], n.sim)                     
p2s  <- matrix( distrHsAT(y2, eta2s, sigma2, nu, x$margins[2], min.dn = min.pr, min.pr = min.pr, max.pr = max.pr)$p2, dim(p1s)[1], n.sim)
p12s <- matrix( p0s*p2s, dim(p1s)[1], n.sim)

if(cond == 1) p12s <- p2s
if(cond == 2) p12s <- p0s

                      }

if(y1 == 1){                                          

p12s <- p1s*p2s 

if(cond == 1) p12s <- p2s
if(cond == 2) p12s <- p1s

           }

   
 }#*#   
   
   
   
 

if(x$margins[2] %in% c(x$VC$m2d, x$VC$m1d)){#*#

p0s   <- matrix( 1 - p1s, dim(p1s)[1], n.sim)
pdf2s <- matrix( distrHsATDiscr(y2, eta2s, sigma2, nu = 1, x$margins[2], x$VC$y2m, min.dn = min.pr, min.pr = min.pr, max.pr = max.pr)$pdf2 , dim(p1s)[1], n.sim)         # not sure about y2m

if(y1 == 0){
p12s <- p0s*pdf2s
if(cond == 1) p12s <- pdf2s
if(cond == 2) p12s <- p0s
          }

if(y1 == 1){
p12s <- p1s*pdf2s
if(cond == 1) p12s <- pdf2s
if(cond == 2) p12s <- p1s
           }
       
}#*#  
 
 
 
}# int


} # indep


list(p12 = p12, p12s = p12s, p1 = p1, p2 = p2, p3 = NULL, CIkt = CIkt, tau = tau)


}
KironmoyDas/KD-STAT0035-GMupdate documentation built on Feb. 15, 2021, 12:17 a.m.