gjrm: Generalised Joint Regression Models with...

Description Usage Arguments Details Value WARNINGS Author(s) References See Also Examples

View source: R/gjrm.r

Description

gjrm fits flexible joint models with binary/continuous/discrete/survival margins, with several types of covariate effects, copula and marginal distributions.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
gjrm(formula, data = list(), weights = NULL, subset = NULL,  
     BivD = "N", margins, Model, dof = 3, ordinal = FALSE,  
     surv = FALSE, cens1 = NULL, cens2 = NULL, cens3 = NULL, dep.cens = FALSE,
     gamlssfit = FALSE, fp = FALSE, infl.fac = 1, 
     rinit = 1, rmax = 100, 
     iterlimsp = 50, tolsp = 1e-07,
     gc.l = FALSE, parscale, extra.regI = "t",
     k1.tvc = 0, k2.tvc = 0, knots = NULL,
     penCor = "unpen", sp.penCor = 3, 
     Chol = FALSE, gamma = 1, w.alasso = NULL,
     drop.unused.levels = TRUE, ind.ord = FALSE,
     min.dn = 1e-40, min.pr = 1e-16, max.pr = 0.999999)

Arguments

formula

In the basic setup this will be a list of two (or three) formulas, one for equation 1, the other for equation 2 and another one for equation 3 if a trivariate model is fitted to the data. Otherwise, more equations can be used depending on the number of distributional parameters. s terms are used to specify smooth functions of predictors; see the documentation of mgcv for further details on formula specifications. Note that if a selection model is employed (that is, Model = "BSS" or Model = "TSS") then the first formula (and the second as well for trivariate models) MUST refer to the selection equation(s). When one outcome is binary and the other continuous/discrete then the first equation should refer to the binary outcome whereas the second to the continuous/discrete one. When one outcome is discrete and the other continuous then the first equation has to be the discrete one.

data

An optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which gjrm is called.

weights

Optional vector of prior weights to be used in fitting.

subset

Optional vector specifying a subset of observations to be used in the fitting process.

margins

It indicates the distributions used for the two or three margins. Possible distributions are normal ("N"), log-normal ("LN"), Gumbel ("GU"), reverse Gumbel ("rGU"), generelised Pareto ("GP"), generelised Pareto II ("GPII") where the shape parameter is forced to be > -0.5, generelised Pareto (with orthogonal parametrisation) ("GPo") where the shape parameter is forced to be > -0.5, discrete generelised Pareto ("DGP"), discrete generelised Pareto II ("DGPII") where the shape parameter is forced to be positive, logistic ("LO"), Weibull ("WEI"), inverse Gaussian ("iG"), gamma ("GA"), Dagum ("DAGUM"), Singh-Maddala ("SM"), beta ("BE"), Fisk ("FISK", also known as log-logistic distribution), Poisson ("PO"), zero truncated Poisson ("ZTP"), negative binomial - type I ("NBI"), negative binomial - type II ("NBII"), Poisson inverse Gaussian ("PIG"). If the responses are binary then possible link functions are "probit", "logit", "cloglog". For survival models, the margins can be proportional hazars ("PH"), odds ("PO") or "probit".

Model

Possible values are "B" (bivariate model), "T" (trivariate model) "BSS" (bivariate model with non-random sample selection), "TSS" (trivariate model with double non-random sample selection), "TESS" (trivariate model with endogeneity and non-random sample selection), "BPO" (bivariate model with partial observability) and "BPO0" (bivariate model with partial observability and zero correlation). Options "T", "TESS" and "TSS" are currently for trivariate binary models only. "BPO" and "BPO0" are for bivariate binary models only.

dof

If BivD = "T" then the degrees of freedom can be set to a value greater than 2 and smaller than 249. Only for continuous margins, this will be taken as a starting value and the dof estimated from the data.

ordinal

If TRUE then the ordinal model is employed.

surv

If TRUE then a bivariate survival model is fitted.

cens1

Binary censoring indicator 1. This is required when surv = TRUE. This variable has to be equal to 1 if the event occurred and 0 otherwise.

cens2

Binary censoring indicator 2. This is required when surv = TRUE.

cens3

Binary censoring indicator employed only when surv = TRUE, dep.cens = TRUE and administrative censoring is present.

dep.cens

If TRUE then the dependence censored model is employed.

gamlssfit

If gamlssfit = TRUE then gamlss univariate models are also fitted. This is useful for obtaining starting values, for instance.

BivD

Type of bivariate error distribution employed. Possible choices are "N", "C0", "C90", "C180", "C270", "GAL0", "GAL90", "GAL180", "GAL270", "J0", "J90", "J180", "J270", "G0", "G90", "G180", "G270", "F", "AMH", "FGM", "T", "PL", "HO" which stand for bivariate normal, Clayton, rotated Clayton (90 degrees), survival Clayton, rotated Clayton (270 degrees), Galambos, rotated Galambos (90 degrees), survival Galambos, rotated Galambos (270 degrees), Joe, rotated Joe (90 degrees), survival Joe, rotated Joe (270 degrees), Gumbel, rotated Gumbel (90 degrees), survival Gumbel, rotated Gumbel (270 degrees), Frank, Ali-Mikhail-Haq, Farlie-Gumbel-Morgenstern, Student-t with dof, Plackett, Hougaard. Each of the Clayton, Galambos, Joe and Gumbel copulae is allowed to be mixed with a rotated version of the same family. The options are: "C0C90", "C0C270", "C180C90", "C180C270", "GAL0GAL90", "GAL0GAL270", "GAL180GAL90", "GAL180GAL270", "G0G90", "G0G270", "G180G90", "G180G270", "J0J90", "J0J270", "J180J90" and "J180J270". This allows the user to model negative and positive tail dependencies.

fp

If TRUE then a fully parametric model with unpenalised regression splines if fitted. See the Example 2 below.

infl.fac

Inflation factor for the model degrees of freedom in the approximate AIC. Smoother models can be obtained setting this parameter to a value greater than 1.

rinit

Starting trust region radius. The trust region radius is adjusted as the algorithm proceeds. See the documentation of trust for further details.

rmax

Maximum allowed trust region radius. This may be set very large. If set small, the algorithm traces a steepest descent path.

iterlimsp

A positive integer specifying the maximum number of loops to be performed before the smoothing parameter estimation step is terminated.

tolsp

Tolerance to use in judging convergence of the algorithm when automatic smoothing parameter estimation is used.

gc.l

This is relevant when working with big datasets. If TRUE then the garbage collector is called more often than it is usually done. This keeps the memory footprint down but it will slow down the routine.

parscale

The algorithm will operate as if optimizing objfun(x / parscale, ...) where parscale is a scalar. If missing then no rescaling is done. See the documentation of trust for more details.

extra.regI

If "t" then regularization as from trust is applied to the information matrix if needed. If different from "t" then extra regularization is applied via the options "pC" (pivoted Choleski - this will only work when the information matrix is semi-positive or positive definite) and "sED" (symmetric eigen-decomposition).

k1.tvc, k2.tvc

Only used for tvc ps smoothers when using survival models.

knots

Optional list containing user specified knot values to be used for basis construction.

penCor

This and the arguments below are only for trivariate binary models. Type of penalty for correlation coefficients. Possible values are "unpen", "lasso", "ridge", "alasso".

sp.penCor

Starting value for smoothing parameter of penCor.

Chol

If TRUE then the Cholesky method instead of the eigenvalue method is employed for the correlation matrix.

gamma

Inflation factor used only for the alasso penalty.

w.alasso

When using the alasso penalty a weight vector made up of three values must be provided.

drop.unused.levels

By default unused levels are dropped from factors before fitting. For some smooths involving factor variables this may have to be turned off (only use if you know what you are doing).

ind.ord

Joint ordinal model under independence.

min.dn, min.pr, max.pr

These values are used to set, depending on the model used for modelling, the minimum and maximum allowed for the densities and probabilities; recall that the margins of copula models have to be in the range (0,1). These parameters are employed to avoid potential overflows/underflows in the calculations and the default values seem to offer a good compromise. Function conv.check() provides some relevant diagnostic information which can be used, for example, to check whether the lower bounds of min.dn and min.pr have been reached. So based on this or if the user wishes to do some sensitivity analysis then this can be easily carried out using these three arguments. However, the user has to be cautious. For instance, it would not make much sense to choose for min.dn and min.pr values bigger than the default ones. Bear in mind that the bounds can be reached for ill-defined models. For certain distributions/models, if convergence failure occurs and the bounds have been reached then the user can try a sensitivity analysis as mentioned above.

Details

The joint models considered by this function consist of two or three model equations which depend on flexible linear predictors and whose dependence between the responses is modelled through one or more parameters of a chosen multivariate distribution. The additive predictors of the equations are flexibly specified using parametric components and smooth functions of covariates. The same can be done for the dependence parameter(s) if it makes sense. Estimation is achieved within a penalized likelihood framework with integrated automatic multiple smoothing parameter selection. The use of penalty matrices allows for the suppression of that part of smooth term complexity which has no support from the data. The trade-off between smoothness and fitness is controlled by smoothing parameters associated with the penalty matrices. Smoothing parameters are chosen to minimise an approximate AIC.

For sample selection models, if there are factors in the model then before fitting the user has to ensure that the numbers of factor variables' levels in the selected sample are the same as those in the complete dataset. Even if a model could be fitted in such a situation, the model may produce fits which are not coherent with the nature of the correction sought. As an example consider the situation in which the complete dataset contains a factor variable with five levels and that only three of them appear in the selected sample. For the outcome equation (which is the one of interest) only three levels of such variable exist in the population, but their effects will be corrected for non-random selection using a selection equation in which five levels exist instead. Having differing numbers of factors' levels between complete and selected samples will also make prediction not feasible (an aspect which may be particularly important for selection models); clearly it is not possible to predict the response of interest for the missing entries using a dataset that contains all levels of a factor variable but using an outcome model estimated using a subset of these levels.

There are many continuous/discrete/survival distributions and copula functions to choose from and we plan to include more options. Get in touch if you are interested in a particular distribution.

Value

The function returns an object of class gjrm as described in gjrmObject.

WARNINGS

Convergence can be checked using conv.check which provides some information about the score and information matrix associated with the fitted model. The former should be close to 0 and the latter positive definite. gjrm() will produce some warnings if there is a convergence issue.

Convergence failure may sometimes occur. This is not necessarily a bad thing as it may indicate specific problems with a fitted model. In such a situation, the user may use some extra regularisation (see extra.regI) and/or rescaling (see parscale). Using gamlssfit = TRUE is typically more effective than the first two options as this will provide better calibrated starting values as compared to those obtained from the default starting value procedure. The default option is, however, gamlssfit = FALSE only because it tends to be computationally cheaper and because the default procedure has typically been found to do a satisfactory job in most cases. (The results obtained when using gamlssfit = FALSE and gamlssfit = TRUE could also be compared to check if starting values make any difference.)

The above suggestions may help, especially the latter option. However, the user should also consider re-specifying/simplifying the model, and/or using a diferrent dependence structure and/or checking that the chosen marginal distributions fit the responses well. In our experience, we found that convergence failure typically occurs when the model has been misspecified and/or the sample size is low compared to the complexity of the model. Examples of misspecification include using a Clayton copula rotated by 90 degrees when a positive association between the margins is present instead, using marginal distributions that do not fit the responses, and employing a copula which does not accommodate the type and/or strength of the dependence between the margins (e.g., using AMH when the association between the margins is strong). When using smooth functions, if the covariate's values are too sparse then convergence may be affected by this. It is also worth bearing in mind that the use of three parameter marginal distributions requires the data to be more informative than a situation in which two parameter distributions are used instead.

In the contexts of endogeneity and non-random sample selection, extra attention is required when specifying the dependence parameter as a function of covariates. This is because in these situations the dependence parameter mainly models the association between the unobserved confounders in the two equations. Therefore, this option would make sense when it is believed that the strength of the association between the unobservables in the two equations varies based on some grouping factor or across geographical areas, for instance. In any case, a clear rationale is typically needed in such cases.

Author(s)

Maintainer: Giampiero Marra giampiero.marra@ucl.ac.uk

References

See help("GJRM-package").

See Also

adjCov, VuongClarke, GJRM-package, gjrmObject, conv.check, summary.gjrm

Examples

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
library(GJRM)

####################################
####################################
####################################
# JOINT MODELS WITH BINARY MARGINS #
####################################
####################################
####################################

############
## Example 1
############

set.seed(0)

n <- 400

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u     <- rMVN(n, rep(0,2), Sigma)

x1 <- round(runif(n)); x2 <- runif(n); x3 <- runif(n)

f1   <- function(x) cos(pi*2*x) + sin(pi*x)
f2   <- function(x) x+exp(-30*(x-0.5)^2)   

y1 <- ifelse(-1.55 + 2*x1    + f1(x2) + u[,1] > 0, 1, 0)
y2 <- ifelse(-0.25 - 1.25*x1 + f2(x2) + u[,2] > 0, 1, 0)

dataSim <- data.frame(y1, y2, x1, x2, x3)

## CLASSIC BIVARIATE PROBIT

out  <- gjrm(list(y1 ~ x1 + x2 + x3, 
                       y2 ~ x1 + x2 + x3), 
                       data = dataSim, 
                       margins = c("probit", "probit"),
                       Model = "B")
conv.check(out)
summary(out)
AIC(out)
BIC(out)

## Not run:  


## BIVARIATE PROBIT with Splines

out  <- gjrm(list(y1 ~ x1 + s(x2) + s(x3), 
                  y2 ~ x1 + s(x2) + s(x3)),  
                  data = dataSim,
                  margins = c("probit", "probit"),
                  Model = "B")
conv.check(out)
summary(out)
AIC(out)


## estimated smooth function plots - red lines are true curves

x2 <- sort(x2)
f1.x2 <- f1(x2)[order(x2)] - mean(f1(x2))
f2.x2 <- f2(x2)[order(x2)] - mean(f2(x2))
f3.x3 <- rep(0, length(x3))

par(mfrow=c(2,2),mar=c(4.5,4.5,2,2))
plot(out, eq = 1, select = 1, seWithMean = TRUE, scale = 0)
lines(x2, f1.x2, col = "red")
plot(out, eq = 1, select = 2, seWithMean = TRUE, scale = 0)
lines(x3, f3.x3, col = "red")
plot(out, eq = 2, select = 1, seWithMean = TRUE, scale = 0)
lines(x2, f2.x2, col = "red")
plot(out, eq = 2, select = 2, seWithMean = TRUE, scale = 0)
lines(x3, f3.x3, col = "red")


## BIVARIATE PROBIT with Splines and 
## varying dependence parameter

eq.mu.1  <- y1 ~ x1 + s(x2)
eq.mu.2  <- y2 ~ x1 + s(x2)
eq.theta <-    ~ x1 + s(x2)

fl <- list(eq.mu.1, eq.mu.2, eq.theta)

outD <- gjrm(fl, data = dataSim,
             margins = c("probit", "probit"),
             Model = "B")
             
conv.check(outD)  
summary(outD)
outD$theta

plot(outD, eq = 1, seWithMean = TRUE)
plot(outD, eq = 2, seWithMean = TRUE)
plot(outD, eq = 3, seWithMean = TRUE)
graphics.off()

############
## Example 2
############
## Generate data with one endogenous variable 
## and exclusion restriction

set.seed(0)

n <- 400

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u     <- rMVN(n, rep(0,2), Sigma)

cov   <- rMVN(n, rep(0,2), Sigma)
cov   <- pnorm(cov)
x1 <- round(cov[,1]); x2 <- cov[,2]

f1   <- function(x) cos(pi*2*x) + sin(pi*x)
f2   <- function(x) x+exp(-30*(x-0.5)^2)   

y1 <- ifelse(-1.55 + 2*x1    + f1(x2) + u[,1] > 0, 1, 0)
y2 <- ifelse(-0.25 - 1.25*y1 + f2(x2) + u[,2] > 0, 1, 0)

dataSim <- data.frame(y1, y2, x1, x2)

#
## Testing the hypothesis of absence of endogeneity... 
#

LM.bpm(list(y1 ~ x1 + s(x2), y2 ~ y1 + s(x2)), dataSim, Model = "B")


## CLASSIC RECURSIVE BIVARIATE PROBIT

out <- gjrm(list(y1 ~ x1 + x2, 
                 y2 ~ y1 + x2), 
                 data = dataSim,
                 margins = c("probit", "probit"),
                 Model = "B")
conv.check(out)                        
summary(out)
AIC(out); BIC(out)

## FLEXIBLE RECURSIVE BIVARIATE PROBIT

out <- gjrm(list(y1 ~ x1 + s(x2), 
                 y2 ~ y1 + s(x2)), 
                 data = dataSim,
                 margins = c("probit", "probit"),
                 Model = "B")
conv.check(out)                        
summary(out)
AIC(out); BIC(out)

#
## Testing the hypothesis of absence of endogeneity post estimation... 

gt.bpm(out)

#
## treatment effect, risk ratio and odds ratio with CIs

mb(y1, y2, Model = "B")
AT(out, nm.end = "y1", hd.plot = TRUE) 
RR(out, nm.end = "y1") 
OR(out, nm.end = "y1") 
AT(out, nm.end = "y1", type = "univariate") 
re.imp <- imputeCounter(out, m = 10, "y1")
re.imp$AT

## try a Clayton copula model... 

outC <- gjrm(list(y1 ~ x1 + s(x2), 
                  y2 ~ y1 + s(x2)), 
                  data = dataSim, BivD = "C0",
                  margins = c("probit", "probit"),
                  Model = "B")
conv.check(outC)                         
summary(outC)
AT(outC, nm.end = "y1") 
re.imp <- imputeCounter(outC, m = 10, "y1")
re.imp$AT

## try a Joe copula model... 

outJ <- gjrm(list(y1 ~ x1 + s(x2), 
                  y2 ~ y1 + s(x2)), 
                  data = dataSim, BivD = "J0",
                  margins = c("probit", "probit"),
                  Model = "B")
conv.check(outJ)
summary(outJ)
AT(outJ, "y1") 
re.imp <- imputeCounter(outJ, m = 10, "y1")
re.imp$AT

VuongClarke(out, outJ)

#
## recursive bivariate probit modelling with unpenalized splines 
## can be achieved as follows

outFP <- gjrm(list(y1 ~ x1 + s(x2, bs = "cr", k = 5), 
                   y2 ~ y1 + s(x2, bs = "cr", k = 6)), 
                   fp = TRUE, data = dataSim,
                   margins = c("probit", "probit"),
                   Model = "B")
conv.check(outFP)                            
summary(outFP)

# in the above examples a third equation could be introduced
# as illustrated in Example 1

#
#################
## See also ?meps
#################

############
## Example 3
############
## Generate data with a non-random sample selection mechanism 
## and exclusion restriction

set.seed(0)

n <- 2000

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u     <- rMVN(n, rep(0,2), Sigma)

SigmaC <- matrix(0.5, 3, 3); diag(SigmaC) <- 1
cov    <- rMVN(n, rep(0,3), SigmaC)
cov    <- pnorm(cov)
bi <- round(cov[,1]); x1 <- cov[,2]; x2 <- cov[,3]
  
f11 <- function(x) -0.7*(4*x + 2.5*x^2 + 0.7*sin(5*x) + cos(7.5*x))
f12 <- function(x) -0.4*( -0.3 - 1.6*x + sin(5*x))  
f21 <- function(x) 0.6*(exp(x) + sin(2.9*x)) 

ys <-  0.58 + 2.5*bi + f11(x1) + f12(x2) + u[, 1] > 0
y  <- -0.68 - 1.5*bi + f21(x1) +         + u[, 2] > 0
yo <- y*(ys > 0)
  
dataSim <- data.frame(y, ys, yo, bi, x1, x2)

#
## Testing the hypothesis of absence of non-random sample selection... 

LM.bpm(list(ys ~ bi + s(x1) + s(x2), yo ~ bi + s(x1)), dataSim, Model = "BSS")

# p-value suggests presence of sample selection, hence fit a bivariate model

#
## SEMIPARAMETRIC SAMPLE SELECTION BIVARIATE PROBIT
## the first equation MUST be the selection equation

out <- gjrm(list(ys ~ bi + s(x1) + s(x2), 
                 yo ~ bi + s(x1)), 
                 data = dataSim, Model = "BSS",
                 margins = c("probit", "probit"))
conv.check(out)                          
gt.bpm(out)                        

## compare the two summary outputs
## the second output produces a summary of the results obtained when
## selection bias is not accounted for

summary(out)
summary(out$gam2)

## corrected predicted probability that 'yo' is equal to 1

mb(ys, yo, Model = "BSS")
prev(out, hd.plot = TRUE)
prev(out, type = "univariate", hd.plot = TRUE)

## estimated smooth function plots
## the red line is the true curve
## the blue line is the univariate model curve not accounting for selection bias

x1.s <- sort(x1[dataSim$ys>0])
f21.x1 <- f21(x1.s)[order(x1.s)]-mean(f21(x1.s))

plot(out, eq = 2, ylim = c(-1.65,0.95)); lines(x1.s, f21.x1, col="red")
par(new = TRUE)
plot(out$gam2, se = FALSE, col = "blue", ylim = c(-1.65,0.95), 
     ylab = "", rug = FALSE)

#
#
## try a Clayton copula model... 

outC <- gjrm(list(ys ~ bi + s(x1) + s(x2), 
                  yo ~ bi + s(x1)), 
                  data = dataSim, Model = "BSS", BivD = "C0",
                  margins = c("probit", "probit"))
conv.check(outC)
summary(outC)
prev(outC)


#######################
# Impute using Mice
#######################

library(mice)

ys <- dataSim$ys

dataSim$yo[dataSim$ys == FALSE] <- NA  
dataSim <- dataSim[, -c(1:2)]

imp <- mice(dataSim, m = 1, method = c("copulaSS", "", "", ""),  
            mice.formula = outC$mice.formula, margins = outC$margins, 
            BivD = outC$BivD, maxit = 1)

comp.yo <- dataSim$yo
comp.yo[ys == 0] <- imp$imp$yo[[1]]
mean(comp.yo)

#
################
## See also ?hiv
################

############
## Example 4
############
## Generate data with partial observability

set.seed(0)

n <- 10000

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u     <- rMVN(n, rep(0,2), Sigma)

x1 <- round(runif(n)); x2 <- runif(n); x3 <- runif(n)

y1 <- ifelse(-1.55 + 2*x1 + x2 + u[,1] > 0, 1, 0)
y2 <- ifelse( 0.45 - x3        + u[,2] > 0, 1, 0)
y  <- y1*y2

dataSim <- data.frame(y, x1, x2, x3)


## BIVARIATE PROBIT with Partial Observability

out  <- gjrm(list(y ~ x1 + x2, 
                  y ~ x3), 
                  data = dataSim, Model = "BPO",
                  margins = c("probit", "probit"))
conv.check(out)
summary(out)

# first ten estimated probabilities for the four events from object out

cbind(out$p11, out$p10, out$p00, out$p01)[1:10,]


# case with smooth function 
# (more computationally intensive)  

f1 <- function(x) cos(pi*2*x) + sin(pi*x)

y1 <- ifelse(-1.55 + 2*x1 + f1(x2) + u[,1] > 0, 1, 0)
y2 <- ifelse( 0.45 - x3            + u[,2] > 0, 1, 0)
y  <- y1*y2

dataSim <- data.frame(y, x1, x2, x3)

out  <- gjrm(list(y ~ x1 + s(x2), 
                  y ~ x3), 
                  data = dataSim, Model = "BPO",
                  margins = c("probit", "probit"))

conv.check(out)
summary(out)


# plot estimated and true functions

x2 <- sort(x2); f1.x2 <- f1(x2)[order(x2)] - mean(f1(x2))
plot(out, eq = 1, scale = 0); lines(x2, f1.x2, col = "red")

#
################
## See also ?war
################

## End(Not run)

## Not run: 

######################################################
######################################################
######################################################
# JOINT MODELS WITH BINARY AND/OR CONTINUOUS MARGINS #
######################################################
######################################################
######################################################

library(GJRM)

############
## Example 5
## Generate data
## Correlation between the two equations 0.5 - Sample size 400 

set.seed(0)

n <- 400

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u     <- rMVN(n, rep(0,2), Sigma)

x1 <- round(runif(n)); x2 <- runif(n); x3 <- runif(n)

f1   <- function(x) cos(pi*2*x) + sin(pi*x)
f2   <- function(x) x+exp(-30*(x-0.5)^2)   

y1 <- -1.55 + 2*x1    + f1(x2) + u[,1]
y2 <- -0.25 - 1.25*x1 + f2(x2) + u[,2]

dataSim <- data.frame(y1, y2, x1, x2, x3)

resp.check(y1, "N")
resp.check(y2, "N")

eq.mu.1     <- y1 ~ x1 + s(x2) + s(x3)
eq.mu.2     <- y2 ~ x1 + s(x2) + s(x3)
eq.sigma1   <-    ~ 1
eq.sigma2   <-    ~ 1
eq.theta    <-    ~ x1

fl <- list(eq.mu.1, eq.mu.2, eq.sigma1, eq.sigma2, eq.theta)

# the order above is the one to follow when
# using more than two equations

out  <- gjrm(fl, data = dataSim, margins = c("N", "N"),
             Model = "B")

conv.check(out)
post.check(out)
summary(out)
AIC(out)
BIC(out)
jc.probs(out, 1.4, 2.3, intervals = TRUE)[1:4,]

############
## Example 6
############
## Generate data with one endogenous binary variable 
## and continuous outcome

set.seed(0)

n <- 1000

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u     <- rMVN(n, rep(0,2), Sigma)

cov   <- rMVN(n, rep(0,2), Sigma)
cov   <- pnorm(cov)
x1 <- round(cov[,1]); x2 <- cov[,2]

f1   <- function(x) cos(pi*2*x) + sin(pi*x)
f2   <- function(x) x+exp(-30*(x-0.5)^2)   

y1 <- ifelse(-1.55 + 2*x1    + f1(x2) + u[,1] > 0, 1, 0)
y2 <-        -0.25 - 1.25*y1 + f2(x2) + u[,2] 

dataSim <- data.frame(y1, y2, x1, x2)


## RECURSIVE Model

rc <- resp.check(y2, margin = "N", print.par = TRUE, loglik = TRUE)
AIC(rc); BIC(rc)

out <- gjrm(list(y1 ~ x1 + x2, 
                 y2 ~ y1 + x2), 
                 data = dataSim, margins = c("probit","N"),
                 Model = "B")
conv.check(out)                        
summary(out)
post.check(out)

## SEMIPARAMETRIC RECURSIVE Model

eq.mu.1   <- y1 ~ x1 + s(x2) 
eq.mu.2   <- y2 ~ y1 + s(x2)
eq.sigma  <-    ~ 1
eq.theta  <-    ~ 1

fl <- list(eq.mu.1, eq.mu.2, eq.sigma, eq.theta)

out <- gjrm(fl, data = dataSim, 
            margins = c("probit","N"), gamlssfit = TRUE,
            Model = "B")
conv.check(out)                        
summary(out)
post.check(out)
jc.probs(out, 1, 1.5, intervals = TRUE)[1:4,]
AT(out, nm.end = "y1")
AT(out, nm.end = "y1", type = "univariate")

#
#

############
## Example 7
############
## Generate data with one endogenous continuous exposure 
## and binary outcome

set.seed(0)

n <- 1000

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u     <- rMVN(n, rep(0,2), Sigma)

cov   <- rMVN(n, rep(0,2), Sigma)
cov   <- pnorm(cov)
x1 <- round(cov[,1]); x2 <- cov[,2]

f1   <- function(x) cos(pi*2*x) + sin(pi*x)
f2   <- function(x) x+exp(-30*(x-0.5)^2) 

y1 <-        -0.25 - 2*x1    + f2(x2) + u[,2] 
y2 <- ifelse(-0.25 - 0.25*y1 + f1(x2) + u[,1] > 0, 1, 0)

dataSim <- data.frame(y1, y2, x1, x2)

eq.mu.1   <- y2 ~ y1 + s(x2) 
eq.mu.2   <- y1 ~ x1 + s(x2)
eq.sigma  <-    ~ 1
eq.theta  <-    ~ 1

fl <- list(eq.mu.1, eq.mu.2, eq.sigma, eq.theta)

out <- gjrm(fl, data = dataSim, 
            margins = c("probit","N"),
            Model = "B")
conv.check(out)                        
summary(out)
post.check(out)
AT(out, nm.end = "y1")
AT(out, nm.end = "y1", type = "univariate")
RR(out, nm.end = "y1", rr.plot = TRUE)
RR(out, nm.end = "y1", type = "univariate")
OR(out, nm.end = "y1", or.plot = TRUE)
OR(out, nm.end = "y1", type = "univariate")

#
#

############
## Example 8
##################
## Survival models
##################

set.seed(0)

n  <- 2000
c  <- runif(n, 3, 8)
u  <- runif(n, 0, 1)
z1 <- rbinom(n, 1, 0.5)
z2 <- runif(n, 0, 1)
t  <- rep(NA, n)

beta_0 <- -0.2357
beta_1 <- 1

f <- function(t, beta_0, beta_1, u, z1, z2){ 
  S_0 <- 0.7 * exp(-0.03*t^1.9) + 0.3*exp(-0.3*t^2.5)
  exp(-exp(log(-log(S_0))+beta_0*z1 + beta_1*z2))-u
}


for (i in 1:n){
   t[i] <- uniroot(f, c(0, 8), tol = .Machine$double.eps^0.5, 
                   beta_0 = beta_0, beta_1 = beta_1, u = u[i], 
                   z1 = z1[i], z2 = z2[i], extendInt = "yes" )$root
}

delta1  <- ifelse(t < c, 1, 0)
u1      <- apply(cbind(t, c), 1, min)
dataSim <- data.frame(u1, delta1, z1, z2)


c <- runif(n, 4, 8)
u <- runif(n, 0, 1)
z <- rbinom(n, 1, 0.5)
beta_0 <- -1.05
t      <- rep(NA, n)

f <- function(t, beta_0, u, z){ 
  S_0 <- 0.7 * exp(-0.03*t^1.9) + 0.3*exp(-0.3*t^2.5)
  1/(1 + exp(log((1-S_0)/S_0)+beta_0*z))-u
}



for (i in 1:n){
    t[i] <- uniroot(f, c(0, 8), tol = .Machine$double.eps^0.5, 
                    beta_0 = beta_0, u = u[i], z = z[i], 
                    extendInt="yes" )$root
}

delta2 <- ifelse(t < c,1, 0)
u2     <- apply(cbind(t, c), 1, min)
dataSim$delta2 <- delta2
dataSim$u2     <- u2
dataSim$z      <- z



eq1 <- u1 ~ s(log(u1), bs = "mpi") + z1 + s(z2)
eq2 <- u2 ~ s(log(u2), bs = "mpi") + z 
eq3 <-    ~ s(z2)

out <- gjrm(list(eq1, eq2), data = dataSim, surv = TRUE,
            margins = c("PH", "PO"), 
            cens1 = delta1, cens2 = delta2, Model = "B")
                 
# PH margin fit can also be compared with cox.ph from mgcv
                 
conv.check(out)
res <- post.check(out)

## martingale residuals
mr1 <- out$cens1 - res$qr1
mr2 <- out$cens2 - res$qr2

# can be plotted against covariates
# obs index, survival time, rank order of
# surv times

# to determine func form, one may use
# res from null model against covariate

# to test for PH, use:
# library(survival)
# fit <- coxph(Surv(u1, delta1) ~ z1 + z2, data = dataSim) 
# temp <- cox.zph(fit) 
# print(temp)                  
# plot(temp, resid = FALSE)     


summary(out)
AIC(out); BIC(out)
plot(out, eq = 1, scale = 0, pages = 1)
plot(out, eq = 2, scale = 0, pages = 1)

hazsurv.plot(out, eq = 1, newdata = data.frame(z1 = 0, z2 = 0), 
             shade = TRUE, n.sim = 100, baseline = TRUE)
hazsurv.plot(out, eq = 1, newdata = data.frame(z1 = 0, z2 = 0), 
             shade = TRUE, n.sim = 100, type = "hazard", baseline = TRUE, 
             intervals = FALSE)
hazsurv.plot(out, eq = 2, newdata = data.frame(z = 0), 
             shade = FALSE, n.sim = 100, baseline = TRUE)
hazsurv.plot(out, eq = 2, newdata = data.frame(z = 0), 
             shade = TRUE, n.sim = 100, type = "hazard", baseline = TRUE)
 
jc.probs(out, type = "joint", intervals = TRUE)[1:5,]
 
newd0 <- newd1 <- data.frame(z = 0, z1 = mean(dataSim$z1), 
                             z2 = mean(dataSim$z2), 
                             u1 =  mean(dataSim$u1) + 1, 
                             u2 =  mean(dataSim$u2) + 1) 
newd1$z <- 1                   

jc.probs(out, type = "joint", newdata = newd0, intervals = TRUE)
jc.probs(out, type = "joint", newdata = newd1, intervals = TRUE)

out1 <- gjrm(list(eq1, eq2, eq3), data = dataSim, surv = TRUE,
                  margins = c("PH", "PO"), 
                  cens1 = delta1, cens2 = delta2, gamlssfit = TRUE,
                  Model = "B") 


# eq1 <- u1 ~ z1 + s(z2)
# eq2 <- u2 ~ z  
# eq3 <-    ~ s(z2)    
# note that Weibull is implemented as AFT model (test case)
# out2 <- gjrm(list(eq1, eq2, ~ 1, ~ 1, eq3), data = dataSim, surv = TRUE,
#                   margins = c("WEI", "WEI"), 
#                   cens1 = delta1, cens2 = delta2,
#                   Model = "B")    
                  
#########################################
## Joint continuous and survival outcomes
#########################################  
# work in progress
#
# eq1 <- z2 ~ z1
# eq2 <- u2 ~ s(u2, bs = "mpi") + z  
# eq3 <-    ~ s(z2)                  
# eq4 <-    ~ s(z2)                  
#                   
# f.l <- list(eq1, eq2, eq3, eq4)                  
#   
# out3 <- gjrm(f.l, data = dataSim, surv = TRUE,
#                   margins = c("N", "PO"), 
#                   cens1 = NULL, cens2 = delta2, 
#                   gamlssfit = TRUE, Model = "B")   
# 
# conv.check(out3)
# post.check(out3)
# summary(out3)
# AIC(out3); BIC(out3)
# plot(out3, eq = 2, scale = 0, pages = 1)
# plot(out3, eq = 3, scale = 0, pages = 1)  
# plot(out3, eq = 4, scale = 0, pages = 1)                  
# 
# newd <- newd1 <- data.frame(z = 0, z1 = mean(dataSim$z1), 
#                              z2 = mean(dataSim$z2), 
#                              u2 =  mean(dataSim$u2) + 1) 
# 
# jc.probs(out3, y1 = 0.6, type = "joint", newdata = newd, intervals = TRUE)                

## End(Not run)

## Not run:  

##########################################
##########################################
##########################################
# JOINT MODELS WITH THREE BINARY MARGINS #
##########################################
##########################################
##########################################

library(GJRM)

############
## Example 9
############
## Generate data
## Correlation between the two equations 0.5 - Sample size 400 

set.seed(0)

n <- 400

Sigma <- matrix(0.5, 3, 3); diag(Sigma) <- 1
u     <- rMVN(n, rep(0,3), Sigma)

x1 <- round(runif(n)); x2 <- runif(n); x3 <- runif(n)

f1   <- function(x) cos(pi*2*x) + sin(pi*x)
f2   <- function(x) x+exp(-30*(x-0.5)^2) 

y1 <- ifelse(-1.55 +    2*x1 - f1(x2) + u[,1] > 0, 1, 0)
y2 <- ifelse(-0.25 - 1.25*x1 + f2(x2) + u[,2] > 0, 1, 0)
y3 <- ifelse(-0.75 + 0.25*x1          + u[,3] > 0, 1, 0)

dataSim <- data.frame(y1, y2, y3, x1, x2)

f.l <- list(y1 ~ x1 + s(x2), 
            y2 ~ x1 + s(x2),
            y3 ~ x1)  

out  <- gjrm(f.l, data = dataSim, Model = "T",
             margins = c("probit", "probit", "probit"))
out1 <- gjrm(f.l, data = dataSim, Chol = TRUE, Model = "T",
             margins = c("probit", "probit", "probit"))

conv.check(out)
summary(out)
plot(out, eq = 1)
plot(out, eq = 2)
AIC(out)
BIC(out)

out  <- gjrm(f.l, data = dataSim, Model = "T", 
             margins = c("probit","logit","cloglog"))
out1 <- gjrm(f.l, data = dataSim, Chol = TRUE, Model = "T",
             margins = c("probit","logit","cloglog"))                    
conv.check(out)
summary(out)
plot(out, eq = 1)
plot(out, eq = 2)
AIC(out)
BIC(out)

f.l <- list(y1 ~ x1 + s(x2), 
            y2 ~ x1 + s(x2),
            y3 ~ x1,
               ~ 1, ~ 1, ~ 1) 
               
out1 <- gjrm(f.l, data = dataSim, Chol = TRUE, Model = "T", 
             margins = c("probit", "probit", "probit"))
   
f.l <- list(y1 ~ x1 + s(x2), 
            y2 ~ x1 + s(x2),
            y3 ~ x1,
               ~ 1, ~ s(x2), ~ 1) 
               
out2 <- gjrm(f.l, data = dataSim, Chol = TRUE, Model = "T", 
             margins = c("probit", "probit", "probit"))   

f.l <- list(y1 ~ x1 + s(x2), 
            y2 ~ x1 + s(x2),
            y3 ~ x1,
               ~ x1, ~ s(x2), ~ x1 + s(x2)) 
               
out2 <- gjrm(f.l, data = dataSim, Chol = TRUE, Model = "T", 
             margins = c("probit", "probit", "probit"))   

f.l <- list(y1 ~ x1 + s(x2), 
            y2 ~ x1 + s(x2),
            y3 ~ x1,
               ~ x1, ~ x1, ~ s(x2)) 
               
out2 <- gjrm(f.l, data = dataSim, Chol = TRUE, Model = "T", 
             margins = c("probit", "probit", "probit")) 

f.l <- list(y1 ~ x1 + s(x2), 
            y2 ~ x1 + s(x2),
            y3 ~ x1,
               ~ x1, ~ x1 + x2, ~ s(x2)) 
               
out2 <- gjrm(f.l, data = dataSim, Chol = TRUE, Model = "T", 
             margins = c("probit", "probit", "probit")) 

f.l <- list(y1 ~ x1 + s(x2), 
            y2 ~ x1 + s(x2),
            y3 ~ x1,
               ~ x1 + x2, ~ x1 + x2, ~ x1 + x2) 
               
out2 <- gjrm(f.l, data = dataSim, Chol = TRUE, Model = "T", 
             margins = c("probit", "probit", "probit")) 
       
       
jcres1 <- jc.probs(out2, 1, 1, 1, type = "joint", cond = 0, 
                   intervals = TRUE, n.sim = 100)
       
nw <- data.frame( x1 = 0, x2 = seq(0, 1, length.out = 100) )   
       
jcres2 <- jc.probs(out2, 1, 1, 1, newdata = nw, type = "joint", 
                   cond = 0, intervals = TRUE, n.sim = 100)
      
#############
## Example 10
#############
## Generate data
## with double sample selection

set.seed(0)

n <- 5000

Sigma <- matrix(c(1,   0.5, 0.4,
                  0.5,   1, 0.6,
                  0.4, 0.6,   1 ), 3, 3)

u <- rMVN(n, rep(0,3), Sigma)

f1   <- function(x) cos(pi*2*x) + sin(pi*x)
f2   <- function(x) x+exp(-30*(x-0.5)^2) 

x1 <- runif(n)
x2 <- runif(n)
x3 <- runif(n)
x4 <- runif(n)
  
y1 <-  1    + 1.5*x1 -     x2 + 0.8*x3 - f1(x4) + u[, 1] > 0
y2 <-  1    - 2.5*x1 + 1.2*x2 +     x3          + u[, 2] > 0
y3 <-  1.58 + 1.5*x1 - f2(x2)                   + u[, 3] > 0

dataSim <- data.frame(y1, y2, y3, x1, x2, x3, x4)

f.l <- list(y1 ~ x1 + x2 + x3 + s(x4), 
            y2 ~ x1 + x2 + x3, 
            y3 ~ x1 + s(x2))   
          
out <- gjrm(f.l, data = dataSim, Model = "TSS",
            margins = c("probit", "probit", "probit"))
conv.check(out)
summary(out)
plot(out, eq = 1)
plot(out, eq = 3)
prev(out)
prev(out, type = "univariate")
prev(out, type = "naive")

## End(Not run)

## Not run:  

###################################################
###################################################
###################################################
# JOINT MODELS WITH BINARY AND CONTINUOUS MARGINS #
# WITH SAMPLE SELECTION                           #
###################################################
###################################################
###################################################

library(GJRM)

######################################################################
## Generate data
## Correlation between the two equations and covariate correlation 0.5 
## Sample size 2000 
######################################################################
#############
## Example 11
#############
set.seed(0)

n <- 2000

rh <- 0.5      

sigmau <- matrix(c(1, rh, rh, 1), 2, 2)
u      <- rMVN(n, rep(0,2), sigmau)

sigmac <- matrix(rh, 3, 3); diag(sigmac) <- 1
cov    <- rMVN(n, rep(0,3), sigmac)
cov    <- pnorm(cov)

bi <- round(cov[,1]); x1 <- cov[,2]; x2 <- cov[,3]
  
f11 <- function(x) -0.7*(4*x + 2.5*x^2 + 0.7*sin(5*x) + cos(7.5*x))
f12 <- function(x) -0.4*( -0.3 - 1.6*x + sin(5*x))  
f21 <- function(x) 0.6*(exp(x) + sin(2.9*x)) 

ys <-  0.58 + 2.5*bi + f11(x1) + f12(x2) + u[, 1] > 0
y  <- -0.68 - 1.5*bi + f21(x1) +           u[, 2]
yo <- y*(ys > 0)
  
dataSim <- data.frame(ys, yo, bi, x1, x2)

## CLASSIC SAMPLE SELECTION MODEL
## the first equation MUST be the selection equation

resp.check(yo[ys > 0], "N")

out <- gjrm(list(ys ~ bi + x1 + x2, 
                 yo ~ bi + x1), 
                 data = dataSim, Model = "BSS",
                 margins = c("probit", "N"))
conv.check(out)
post.check(out)
summary(out)

AIC(out)
BIC(out)


## SEMIPARAMETRIC SAMPLE SELECTION MODEL

out <- gjrm(list(ys ~ bi + s(x1) + s(x2), 
                 yo ~ bi + s(x1)), 
                 data = dataSim, Model = "BSS",
                 margins = c("probit", "N"))
conv.check(out) 
post.check(out)
AIC(out)

## compare the two summary outputs
## the second output produces a summary of the results obtained when only 
## the outcome equation is fitted, i.e. selection bias is not accounted for

summary(out)
summary(out$gam2)

## estimated smooth function plots
## the red line is the true curve
## the blue line is the naive curve not accounting for selection bias

x1.s <- sort(x1[dataSim$ys>0])
f21.x1 <- f21(x1.s)[order(x1.s)] - mean(f21(x1.s))

plot(out, eq = 2, ylim = c(-1, 0.8)); lines(x1.s, f21.x1, col = "red")
par(new = TRUE)
plot(out$gam2, se = FALSE, lty = 3, lwd = 2, ylim = c(-1, 0.8), 
     ylab = "", rug = FALSE)


## IMPUTE MISSING VALUES

n.m <- 10
res <- imputeSS(out, n.m)
bet <- NA

for(i in 1:n.m){

dataSim$yo[dataSim$ys == 0] <- res[[i]]

outg <- gamlss(list(yo ~ bi + s(x1)), data = dataSim)
bet[i] <- coef(outg)["bi"]
print(i)
}

mean(bet)

##


## SEMIPARAMETRIC SAMPLE SELECTION MODEL with association 
## and dispersion parameters 
## depending on covariates as well

eq.mu.1   <- ys ~ bi + s(x1) + s(x2)
eq.mu.2   <- yo ~ bi + s(x1)
eq.sigma  <-    ~ bi
eq.theta  <-    ~ bi + x1

fl <- list(eq.mu.1, eq.mu.2, eq.sigma, eq.theta)

out <- gjrm(fl, data = dataSim, Model = "BSS",
                 margins = c("probit", "N"))
conv.check(out)   
post.check(out)
summary(out)
out$sigma
out$theta

jc.probs(out, 0, 0.3, intervals = TRUE)[1:4,]

outC0 <- gjrm(fl, data = dataSim, BivD = "C0", Model = "BSS",
              margins = c("probit", "N"))
conv.check(outC0)
post.check(outC0)
AIC(out, outC0)
BIC(out, outC0)

## IMPUTE MISSING VALUES

n.m <- 10
res <- imputeSS(outC0, n.m)

###############
# or using MICE
###############

library(mice)

ys <- dataSim$ys

dataSim$yo[dataSim$ys == FALSE] <- NA  
dataSim <- dataSim[, -1]

imp <- mice(dataSim, m = 1, method = c("copulaSS", "", "", ""),  
            mice.formula = outC0$mice.formula, margins = outC0$margins, 
            BivD = outC0$BivD, maxit = 1)

comp.yo <- dataSim$yo
comp.yo[ys == 0] <- imp$imp$yo[[1]]
mean(comp.yo)


#
#
#######################################################
## example using Gumbel copula and normal-gamma margins
#######################################################
#############
## Example 12
#############
set.seed(1)

y  <- exp(-0.68 - 1.5*bi + f21(x1) + u[, 2])
yo <- y*(ys > 0)
    
dataSim <- data.frame(ys, yo, bi, x1, x2)


out <- gjrm(list(ys ~ bi + s(x1) + s(x2), 
                 yo ~ bi + s(x1)), 
                 data = dataSim, BivD = "G0", 
                 margins = c("probit", "GA"),
                 Model = "BSS")
conv.check(out)
post.check(out)
summary(out)


ATE <- NA
n.m <- 10
res <- imputeSS(out, n.m)

for(i in 1:n.m){

dataSim$yo[dataSim$ys == 0] <- res[[i]]

outg <- gamlss(list(yo ~ bi + s(x1)), margin = "GA", data = dataSim)

out$gamlss <- outg
ATE[i] <- AT(out, nm.end = "bi", type = "univariate")$res[2]

print(i)

}

AT(out, nm.end = "bi")
mean(ATE)

## End(Not run)

KironmoyDas/KD-STAT0035-GMupdate documentation built on Feb. 15, 2021, 12:17 a.m.