gjrm <- function(formula, data = list(), weights = NULL, subset = NULL,
BivD = "N", margins, Model, dof = 3, ordinal = FALSE,
surv = FALSE, cens1 = NULL, cens2 = NULL, cens3 = NULL, dep.cens = FALSE,
gamlssfit = FALSE, fp = FALSE, infl.fac = 1,
rinit = 1, rmax = 100, iterlimsp = 50, tolsp = 1e-07,
gc.l = FALSE, parscale, extra.regI = "t", k1.tvc = 0, k2.tvc = 0,
knots = NULL, penCor = "unpen",
sp.penCor = 3, Chol = FALSE, gamma = 1, w.alasso = NULL,
drop.unused.levels = TRUE, ind.ord = FALSE,
min.dn = 1e-40, min.pr = 1e-16, max.pr = 0.999999){
if(missing(margins)) stop("You must choose the margins' values.")
if(missing(Model)) stop("You must choose a Model type.")
if(margins[1] == "PH" && surv == TRUE) margins[1] <- "cloglog"
if(margins[1] == "PO" && surv == TRUE) margins[1] <- "logit"
if(margins[2] == "PH" && surv == TRUE) margins[2] <- "cloglog"
if(margins[2] == "PO" && surv == TRUE) margins[2] <- "logit"
bl <- c("probit", "logit", "cloglog")
if(surv == FALSE && ordinal == FALSE){
if( (margins[1] %in% bl && margins[2] %in% bl && is.na(margins[3])) || (margins[1] %in% bl && !(margins[2] %in% bl) && Model == "B" && is.na(margins[3])) ){
L <- eval(substitute(SemiParBIV(formula, data, weights, subset,
Model, BivD, margins, dof, gamlssfit, # margins should be probit probit but ok as it should get an error message
fp, hess = TRUE, infl.fac,
rinit, rmax, iterlimsp, tolsp,
gc.l, parscale, extra.regI, intf = TRUE,
theta.fx = NULL, knots = knots, drop.unused.levels = drop.unused.levels,
min.dn = min.dn, min.pr = min.pr, max.pr = max.pr),list(weights=weights)))
}
}
if(surv == FALSE && ordinal == TRUE){
if( (margins[1] %in% bl && margins[2] %in% bl && is.na(margins[3])) || (margins[1] %in% bl && !(margins[2] %in% bl) && is.na(margins[3])) ){
L <- eval(substitute(CopulaCLM(formula, data, weights, subset,
Model, BivD, margins, dof, gamlssfit,
fp, hess = TRUE, infl.fac,
rinit, rmax, iterlimsp, tolsp,
gc.l, parscale, extra.regI, intf = TRUE,
theta.fx = NULL, knots = knots, drop.unused.levels = drop.unused.levels, ind.ord = ind.ord,
min.dn = min.dn, min.pr = min.pr, max.pr = max.pr),list(weights=weights)))
}
}
if( margins[1] %in% bl && !(margins[2] %in% bl) && surv == FALSE && is.na(margins[3]) && Model == "BSS" && ordinal == FALSE){
L <- eval(substitute( copulaSampleSel(formula, data, weights, subset,
BivD, margins, dof,
fp, infl.fac,
rinit, rmax, iterlimsp, tolsp,
gc.l, parscale, extra.regI, knots, drop.unused.levels = drop.unused.levels,
min.dn = min.dn, min.pr = min.pr, max.pr = max.pr),list(weights=weights)))
}
if(!is.na(margins[3])){
if( margins[1] %in% bl && margins[2] %in% bl && margins[3] %in% bl && surv == FALSE && ordinal == FALSE){
L <- eval(substitute( SemiParTRIV(formula, data, weights, subset,
Model, margins,
penCor, sp.penCor, approx = FALSE, Chol,
infl.fac, gamma, w.alasso,
rinit, rmax,
iterlimsp, tolsp,
gc.l, parscale, extra.regI, knots, drop.unused.levels = drop.unused.levels,
min.dn = min.dn, min.pr = min.pr, max.pr = max.pr),list(weights=weights)))
}
}
if( ( !(margins[1] %in% bl) || surv == TRUE ) && ordinal == FALSE ){
##########################################################################################################################
# preamble
##########################################################################################################################
robust <- FALSE; t.c = 3
sp <- qu.mag <- y1.y2 <- y1.cy2 <- cy1.y2 <- cy1.cy2 <- cy <- cy1 <- gamlss1 <- gamlss2 <- gam1 <- gam2 <- y1m <- y2m <- indexTeq1 <- indexTeq2 <- NULL
i.rho <- log.sig2.2 <- log.nu.2 <- log.nu.1 <- log.sig2.1 <- dof.st <- NULL
end <- X3.d2 <- X4.d2 <- X5.d2 <- X6.d2 <- X7.d2 <- X8.d2 <- l.sp3 <- l.sp4 <- l.sp5 <- l.sp6 <- l.sp7 <- l.sp8 <- 0
sp1 <- sp2 <- NULL
sp3 <- gp3 <- gam3 <- X3 <- sp4 <- gp4 <- gam4 <- X4 <- sp5 <- gp5 <- gam5 <- X5 <- NULL
sp6 <- gp6 <- gam6 <- X6 <- sp7 <- gp7 <- gam7 <- X7 <- sp8 <- gp8 <- gam8 <- X8 <- NULL
c11 <- c10 <- c01 <- c00 <- NA
Sl.sf <- NULL
sp.method <- "perf"
Xd1 <- Xd2 <- mono.sm.pos1 <- mono.sm.pos2 <- mono.sm.pos <- NULL
surv.flex <- FALSE
Deq1 <- pos.pbeq1 <- Deq2 <- pos.pbeq2 <- list()
###################################
BivD2 <- c("C0C90","C0C270","C180C90","C180C270",
"J0J90","J0J270","J180J90","J180J270",
"G0G90","G0G270","G180G90","G180G270",
"GAL0GAL90", "GAL0GAL270", "GAL180GAL90", "GAL180GAL270")
opc <- c("N","C0","C90","C180","C270","J0","J90","J180","J270","G0","G90","G180","G270","F","AMH","FGM","T","PL","HO","GAL0", "GAL90", "GAL180", "GAL270")
scc <- c("C0", "C180", "GAL0" , "GAL180", "J0", "J180", "G0", "G180", BivD2)
sccn <- c("C90", "C270", "GAL90", "GAL270","J90", "J270", "G90", "G270")
m2 <- c("N","GU","rGU","LO","LN","WEI","iG","GA","BE","FISK","GP","GPII","GPo")
m3 <- c("DAGUM","SM","TW")
m1d <- c("PO", "ZTP")
m2d <- c("NBI", "NBII","PIG","DGP","DGPII")
m3d <- c("DEL","SICHEL")
ct <- data.frame( c(opc), c(1:14,55,56,57,60,61,62:65) )
cta <- data.frame( c(opc), c(1,3,23,13,33,6,26,16,36,4,24,14,34,5,55,56,2,60,61,62:65) )
if(BivD %in% BivD2){
if(BivD %in% BivD2[1:4]) BivDt <- "C0"
if(BivD %in% BivD2[5:12]) BivDt <- "J0"
if(BivD %in% BivD2[13 :16]) BivDt <- "C0" # useful for ass dep function but we calculate it differently, so ok like this
nC <- ct[which( ct[,1]==BivDt),2]
nCa <- cta[which(cta[,1]==BivDt),2]
}
if(!(BivD %in% BivD2)){
nC <- ct[which( ct[,1]==BivD),2]
nCa <- cta[which(cta[,1]==BivD),2]
}
#######################################################################################
if(!is.list(formula)) stop("You must specify a list of equations.")
l.flist <- length(formula)
form.check(formula, l.flist)
cl <- match.call()
mf <- match.call(expand.dots = FALSE)
pred.varR <- pred.var(formula, l.flist)
v1 <- pred.varR$v1
v2 <- pred.varR$v2
pred.n <- pred.varR$pred.n
fake.formula <- paste(v1[1], "~", paste(pred.n, collapse = " + "))
environment(fake.formula) <- environment(formula[[1]])
mf$formula <- fake.formula
mf$min.dn <- mf$min.pr <- mf$max.pr <- mf$dep.cens <- mf$ordinal <- mf$Model <- mf$knots <- mf$k1.tvc <- mf$k2.tvc <- mf$surv <- mf$BivD <- mf$margins <- mf$fp <- mf$dof <- mf$infl.fac <- mf$rinit <- mf$rmax <- mf$iterlimsp <- mf$tolsp <- mf$gc.l <- mf$parscale <- mf$extra.regI <- mf$gamlssfit <- NULL
mf$drop.unused.levels <- drop.unused.levels
mf[[1]] <- as.name("model.frame")
data <- eval(mf, parent.frame())
if(gc.l == TRUE) gc()
n <- dim(data)[1]
if(!("(weights)" %in% names(data))) {weights <- rep(1,dim(data)[1])
data$weights <- weights
names(data)[length(names(data))] <- "(weights)"} else weights <- data[,"(weights)"]
if(surv == TRUE && !("(cens1)" %in% names(data)) && margins[1] %in% bl ) stop("You must provide the first binary censoring indicator.")
if(surv == TRUE && !("(cens2)" %in% names(data)) && margins[2] %in% bl ) stop("You must provide the second binary censoring indicator.")
if(!("(cens1)" %in% names(data))) {cens1 <- rep(0,dim(data)[1])
data$cens1 <- cens1
names(data)[length(names(data))] <- "(cens1)"} else cens1 <- data[,"(cens1)"]
if(!("(cens2)" %in% names(data))) {cens2 <- rep(0,dim(data)[1])
data$cens2 <- cens2
names(data)[length(names(data))] <- "(cens2)"} else cens2 <- data[,"(cens2)"]
if(!("(cens3)" %in% names(data))) {cens3 <- rep(0,dim(data)[1])
data$cens3 <- cens3
names(data)[length(names(data))] <- "(cens3)"} else cens3 <- data[,"(cens3)"]
M <- list(m1d = m1d, m2 = m2, m2d = m2d, m3 = m3, m3d = m3d, BivD = BivD, bl = bl,
robust = robust, opc = opc, extra.regI = extra.regI, margins = margins, BivD2 = BivD2, dof = dof,
surv = surv, c1 = cens1, c2 = cens2, c3 = cens3, dep.cens = dep.cens)
M$K1 <- NULL
pream.wm(formula, margins, M, l.flist)
formula.eq1 <- formula[[1]]
formula.eq2 <- formula[[2]]
##############################################################
# Equation 1
##############################################################
form.eq12R <- form.eq12(formula.eq1, data, v1, margins[1], m1d, m2d)
formula.eq1 <- form.eq12R$formula.eq1
formula.eq1r <- form.eq12R$formula.eq1r
y1 <- form.eq12R$y1
y1.test <- form.eq12R$y1.test
y1m <- form.eq12R$y1m
if(surv == FALSE) gam1 <- eval(substitute(gam(formula.eq1, gamma=infl.fac, weights=weights, data=data, knots = knots, drop.unused.levels = drop.unused.levels),list(weights=weights)))
if(surv == TRUE && margins[1] %in% c(m2,m3) && margins[2] %in% bl ) gam1 <- eval(substitute(gam(formula.eq1, gamma=infl.fac, weights=weights, data=data, knots = knots, drop.unused.levels = drop.unused.levels),list(weights=weights))) else{
if(surv == TRUE && !(margins[1] %in% bl)) gam1 <- eval(substitute(gam(formula.eq1, gamma=infl.fac, weights=weights*cens1, data=data, knots = knots, drop.unused.levels = drop.unused.levels),list(weights=weights, cens1 = cens1)))
}
if(surv == TRUE && margins[1] %in% bl){
surv.flex <- TRUE
f.eq1 <- form.eq12R$f.eq1
data$urcfcphmwicu <- seq(-10, 10, length.out = dim(data)[1])
tempb <- eval(substitute(gam(f.eq1, family = cox.ph(), data = data, weights = cens1, drop.unused.levels = drop.unused.levels),list(cens1=cens1)))
data$Sh <- as.vector(mm(predict(tempb, type = "response"), min.pr = min.pr, max.pr = max.pr))
cens11 <- ifelse(cens1 == 0, 1e-07, cens1)
gam1 <- eval(substitute(scam(formula.eq1, gamma=infl.fac, weights=weights*cens11, data=data), list(weights=weights, cens11 = cens11)))
lsgam1 <- length(gam1$smooth)
if(lsgam1 == 0) stop("You must use at least a monotonic smooth function of time in the first equation.")
clsm <- ggr <- NA
for(i in 1:lsgam1){ clsm[i] <- class(gam1$smooth[[i]])[1]
#ggr[i] <- max(as.numeric(grepl(v1[1], gam1$smooth[[i]]$vn)))
}
if( sum(as.numeric(clsm[1] %in% c("mpi.smooth")))==0 ) stop("You must have a monotonic smooth of time and it has to be the first to be included.")
#if( sum(as.numeric(clsm %in% c("mpi.smooth")))==0 ) stop("You must use at least an mpi smooth function of time in the first equation.")
#if( sum( as.numeric(clsm %in% c("mpi.smooth")) ) != sum( ggr ) ) stop("You must use mpi smooth function(s) of time in the first equation.")
l.sp1 <- length(gam1$sp)
if(l.sp1 != 0) sp1 <- gam1$sp
###########################################################
#if(dim(data)[1] < 2000) sp.c <- 0.2 else sp.c <- 1/sqrt(dim(data)[1])
#sp1[clsm %in% c("mpi.smooth")] <- sp.c
#sp.c <- 1 # there is really no way for making this step better at the moment
sp1[1] <- 1 #sp.c
gam.call <- gam1$call
gam.call$sp <- sp1
gam1 <- eval(gam.call)
###########################################################
j <- 1
for(i in 1:lsgam1){
if( max(as.numeric(grepl(v1[1], gam1$smooth[[i]]$term))) != 0 && clsm[i] == "mpi.smooth" ) mono.sm.pos1 <- c(mono.sm.pos1, c(gam1$smooth[[i]]$first.para:gam1$smooth[[i]]$last.para) )
#if( max(as.numeric(grepl(v1[1], gam1$smooth[[i]]$vn))) != 0 && clsm[i] != "mpi.smooth" ){
#
#
# if( clsm[i] != "pspline.smooth" && k1.tvc !=0) stop("You have to use a ps smooth to allow for doubly penalised tvc terms in the first eq.")
#
# if( clsm[i] == "pspline.smooth"){
#
# pos.pbeq1[[j]] <- c(gam1$smooth[[i]]$first.para:gam1$smooth[[i]]$last.para)
# indexTeq1 <- c(indexTeq1, pos.pbeq1[[j]] )
# Deq1[[j]] <- diff(diag(length(pos.pbeq1[[j]])), differences = 1)
# j <- j + 1
#
# }
#
#
# }
}
X1 <- predict(gam1, type = "lpmatrix")
if( !is.null(indexTeq1) && k1.tvc !=0){ if(range(X1[, indexTeq1])[1] < 0) stop("Check design matrix for smooth(s) of tvc term(s) in eq. 1.")}
Xd1 <- Xdpred(gam1, data, v1[1])
gam1$y <- data[, v1[1]]
st.v1 <- c( gam1$coefficients )
if(!is.null(indexTeq1)){
st.v1[mono.sm.pos1] <- exp(st.v1[mono.sm.pos1])
while( range(Xd1%*%st.v1)[1] < 0 ) st.v1[indexTeq1] <- 0.999*st.v1[indexTeq1]
gam1$coefficients <- gam1$coefficients.t <- st.v1
gam1$coefficients.t[mono.sm.pos1] <- exp(gam1$coefficients.t[mono.sm.pos1])
}
}
gam1$formula <- formula.eq1r
lsgam1 <- length(gam1$smooth)
y1 <- y1.test
if( margins[1] %in% c("LN") ) y1 <- log(y1)
attr(data,"terms") <- NULL ## to make it work when using log(y1) for instance, this will have to be checked if we need it or not ##
if( !(surv == TRUE && margins[1] %in% bl) ){
names(gam1$model)[1] <- as.character(formula.eq1r[2])
X1 <- predict(gam1, type = "lpmatrix")
l.sp1 <- length(gam1$sp)
sp1 <- gam1$sp
}
gp1 <- gam1$nsdf
X1.d2 <- dim(X1)[2]
##############################################################
# Equation 2
##############################################################
form.eq12R <- form.eq12(formula.eq2, data, v2, margins[2], m1d, m2d)
formula.eq2 <- form.eq12R$formula.eq1
formula.eq2r <- form.eq12R$formula.eq1r
y2 <- form.eq12R$y1
y2.test <- form.eq12R$y1.test
y2m <- form.eq12R$y1m
if(surv == FALSE) gam2 <- eval(substitute(gam(formula.eq2, gamma=infl.fac, weights=weights, data=data, knots = knots, drop.unused.levels = drop.unused.levels),list(weights=weights)))
if(surv == TRUE && !(margins[2] %in% bl)) gam2 <- eval(substitute(gam(formula.eq2, gamma=infl.fac, weights=weights*cens2, data=data, knots = knots, drop.unused.levels = drop.unused.levels),list(weights=weights, cens2 = cens2)))
if(surv == TRUE && margins[2] %in% bl){
surv.flex <- TRUE
f.eq2 <- form.eq12R$f.eq1
data$urcfcphmwicu <- seq(-10, 10, length.out = dim(data)[1])
tempb <- eval(substitute(gam(f.eq2, family = cox.ph(), data = data, weights = cens2, drop.unused.levels = drop.unused.levels),list(cens2=cens2)))
data$Sh <- as.vector(mm(predict(tempb, type = "response"), min.pr = min.pr, max.pr = max.pr))
cens22 <- ifelse(cens2 == 0, 1e-07, cens2)
gam2 <- eval(substitute(scam(formula.eq2, gamma=infl.fac, weights=weights*cens22, data=data), list(weights=weights, cens22 = cens22)))
lsgam2 <- length(gam2$smooth)
if(lsgam2 == 0) stop("You must use at least a monotonic smooth function of time in the second equation.")
clsm <- ggr <- NA
for(i in 1:lsgam2){ clsm[i] <- class(gam2$smooth[[i]])[1]
#ggr[i] <- max(as.numeric(grepl(v2[1], gam2$smooth[[i]]$vn)))
}
if( sum(as.numeric(clsm[1] %in% c("mpi.smooth")))==0 ) stop("You must have a monotonic smooth of time and it has to be the first to be included.")
#if( sum(as.numeric(clsm %in% c("mpi.smooth")))==0 ) stop("You must use at least an mpi smooth function of time in the second equation.")
#if( sum( as.numeric(clsm %in% c("mpi.smooth")) ) != sum( ggr ) ) stop("You must use mpi smooth function(s) of time in the second equation.")
l.sp2 <- length(gam2$sp)
if(l.sp2 != 0) sp2 <- gam2$sp
###########################################################
#if(dim(data)[1] < 2000) sp.c <- 0.2 else sp.c <- 1/sqrt(dim(data)[1])
#sp2[clsm %in% c("mpi.smooth")] <- sp.c
#sp.c <- 1
sp2[1] <- 1 #sp.c
gam.call <- gam2$call
gam.call$sp <- sp2
gam2 <- eval(gam.call)
###########################################################
j <- 1
for(i in 1:lsgam2){
if( max(as.numeric(grepl(v2[1], gam2$smooth[[i]]$term))) != 0 && clsm[i] == "mpi.smooth" ) mono.sm.pos2 <- c(mono.sm.pos2, c(gam2$smooth[[i]]$first.para:gam2$smooth[[i]]$last.para) )
#if( max(as.numeric(grepl(v2[1], gam2$smooth[[i]]$vn))) != 0 && clsm[i] != "mpi.smooth" ){
#
#
# if( clsm[i] != "pspline.smooth" && k2.tvc !=0) stop("You have to use a ps smooth to allow for doubly penalised tvc terms in the second eq.")
#
# if( clsm[i] == "pspline.smooth"){
#
# pos.pbeq2[[j]] <- c(gam2$smooth[[i]]$first.para:gam2$smooth[[i]]$last.para)
# indexTeq2 <- c(indexTeq2, pos.pbeq2[[j]] )
# Deq2[[j]] <- diff(diag(length(pos.pbeq2[[j]])), differences = 1)
# j <- j + 1
#
# }
#
# }
}
X2 <- predict(gam2, type = "lpmatrix")
if( !is.null(indexTeq2) && k2.tvc !=0){ if(range(X2[, indexTeq2])[1] < 0) stop("Check design matrix for smooth(s) of tvc term(s) in eq. 2.")}
Xd2 <- Xdpred(gam2, data, v2[1])
gam2$y <- data[, v2[1]]
st.v2 <- c( gam2$coefficients )
if(!is.null(indexTeq2)){
st.v2[mono.sm.pos2] <- exp(st.v2[mono.sm.pos2])
while( range(Xd2%*%st.v2)[1] < 0 ) st.v2[indexTeq2] <- 0.999*st.v2[indexTeq2]
gam2$coefficients <- gam2$coefficients.t <- st.v2
gam2$coefficients.t[mono.sm.pos2] <- exp(gam2$coefficients.t[mono.sm.pos2])
}
}
gam2$formula <- formula.eq2r
lsgam2 <- length(gam2$smooth)
y2 <- y2.test
if( margins[2] %in% c("LN") ) y2 <- log(y2)
attr(data,"terms") <- NULL ## to make it work when using log(y1) for instance, this will have to be checked if we need it or not ##
if( !(surv == TRUE && margins[2] %in% bl) ){
names(gam2$model)[1] <- as.character(formula.eq2r[2])
X2 <- predict(gam2, type = "lpmatrix")
l.sp2 <- length(gam2$sp)
sp2 <- gam2$sp
}
gp2 <- gam2$nsdf
X2.d2 <- dim(X2)[2]
#################################################################
# Starting value for dependence parameter (and dof for T if used)
#################################################################
res1 <- residuals(gam1)
res2 <- residuals(gam2)
ass.s <- cor(res1, res2, method = "kendall")
ass.s <- sign(ass.s)*ifelse(abs(ass.s) > 0.9, 0.9, abs(ass.s))
i.rho <- ass.dp(ass.s, BivD, scc, sccn, nCa)
dof.st <- log(dof - 2)
names(dof.st) <- "dof.star"
##############################################################
# Other starting values + overall
##############################################################
if( !(margins[1] %in% c(m1d,bl)) ){
start.snR <- startsn(margins[1], y1)
log.sig2.1 <- start.snR$log.sig2.1; names(log.sig2.1) <- "sigma1.star"
if( margins[1] %in% c(m3) ){ log.nu.1 <- start.snR$log.nu.1; names(log.nu.1) <- "nu.1.star"}
}
if( !(margins[2] %in% c(m1d,bl)) ){
start.snR <- startsn(margins[2], y2)
log.sig2.2 <- start.snR$log.sig2.1; names(log.sig2.2) <- "sigma2.star"
if( margins[2] %in% c(m3) ){ log.nu.2 <- start.snR$log.nu.1; names(log.nu.2) <- "nu.2.star"}
}
vo <- list(gam1 = gam1, gam2 = gam2, i.rho = i.rho, log.sig2.2 = log.sig2.2, log.nu.2 = log.nu.2, log.nu.1 = log.nu.1, log.sig2.1 = log.sig2.1, dof.st = dof.st, n = n, drop.unused.levels = drop.unused.levels )
start.v <- overall.sv(margins, M, vo)
##############################################################
# starting values for case of predictors on all parameters
##############################################################
if(l.flist > 2){
overall.svGR <- overall.svG(formula, data, ngc = 2, margins, M, vo, gam1, gam2, knots = knots)
start.v = overall.svGR$start.v
X3 = overall.svGR$X3; X4 = overall.svGR$X4; X5 = overall.svGR$X5
X6 = overall.svGR$X6; X7 = overall.svGR$X7; X8 = overall.svGR$X8
X3.d2 = overall.svGR$X3.d2; X4.d2 = overall.svGR$X4.d2; X5.d2 = overall.svGR$X5.d2
X6.d2 = overall.svGR$X6.d2; X7.d2 = overall.svGR$X7.d2; X8.d2 = overall.svGR$X8.d2
gp3 = overall.svGR$gp3; gp4 = overall.svGR$gp4; gp5 = overall.svGR$gp5
gp6 = overall.svGR$gp6; gp7 = overall.svGR$gp7; gp8 = overall.svGR$gp8
gam3 = overall.svGR$gam3; gam4 = overall.svGR$gam4; gam5 = overall.svGR$gam5
gam6 = overall.svGR$gam6; gam7 = overall.svGR$gam7; gam8 = overall.svGR$gam8
l.sp3 = overall.svGR$l.sp3; l.sp4 = overall.svGR$l.sp4; l.sp5 = overall.svGR$l.sp5
l.sp6 = overall.svGR$l.sp6; l.sp7 = overall.svGR$l.sp7; l.sp8 = overall.svGR$l.sp8
sp3 = overall.svGR$sp3; sp4 = overall.svGR$sp4; sp5 = overall.svGR$sp5
sp6 = overall.svGR$sp6; sp7 = overall.svGR$sp7; sp8 = overall.svGR$sp8
}
##########################################################
# SPs and penalties
##########################################################
GAM <- list(gam1 = gam1, gam2 = gam2, gam3 = gam3, gam4 = gam4,
gam5 = gam5, gam6 = gam6, gam7 = gam7, gam8 = gam8)
if( (l.sp1!=0 || l.sp2!=0 || l.sp3!=0 || l.sp4!=0 || l.sp5!=0 || l.sp6!=0 || l.sp7!=0 || l.sp8!=0) && fp==FALSE ){
L.GAM <- list(l.gam1 = length(gam1$coefficients), l.gam2 = length(gam2$coefficients), l.gam3 = length(gam3$coefficients), l.gam4 = length(gam4$coefficients),
l.gam5 = length(gam5$coefficients), l.gam6 = length(gam6$coefficients), l.gam7 = length(gam7$coefficients), l.gam8 = length(gam8$coefficients))
L.SP <- list(l.sp1 = l.sp1, l.sp2 = l.sp2, l.sp3 = l.sp3, l.sp4 = l.sp4,
l.sp5 = l.sp5, l.sp6 = l.sp6, l.sp7 = l.sp7, l.sp8 = l.sp8)
sp <- c(sp1, sp2, sp3, sp4, sp5, sp6, sp7, sp8)
qu.mag <- S.m(GAM, L.SP, L.GAM)
}
##########################################################
# general lists
##########################################################
if(missing(parscale)) parscale <- 1
respvec <- respvec2 <- respvec3 <- list(y1 = y1, y2 = y2,
y1.y2 = NULL, y1.cy2 = NULL,
cy1.y2 = NULL, cy1.cy2 = NULL,
cy1 = NULL, cy = NULL, univ = 0)
my.env <- new.env()
my.env$signind <- 1 # this is for mixed copulae
lsgam3 <- length(gam3$smooth)
lsgam4 <- length(gam4$smooth)
lsgam5 <- length(gam5$smooth)
lsgam6 <- length(gam6$smooth)
lsgam7 <- length(gam7$smooth)
lsgam8 <- length(gam8$smooth)
if(surv == TRUE && dep.cens == FALSE){
if((surv == TRUE && margins[1] %in% bl && margins[2] %in% bl) || (surv == TRUE && margins[1] %in% m2 && margins[2] %in% m2) ){
c11 <- cens1*cens2
c10 <- cens1*(1-cens2)
c01 <- (1-cens1)*cens2
c00 <- (1-cens1)*(1-cens2)
}
if(surv == TRUE && margins[1] %in% c(m2,m3) && margins[2] %in% bl){
c11 <- cens2
c10 <- 1 - cens2
c01 <- NULL
c00 <- NULL
}
}
if(surv == TRUE && dep.cens == TRUE){
c11 <- NULL
c10 <- cens1
c01 <- cens2 # (1-cens1)
c00 <- cens3 # NULL, in case of A cens then 1 - cens1 - cens2
}
#my.env <- new.env()
my.env$k1 <- k1.tvc
my.env$k2 <- k2.tvc
VC <- list(lsgam1 = lsgam1, indexTeq1 = indexTeq1, indexTeq2 = indexTeq2,
lsgam2 = lsgam2, Deq1 = Deq1, pos.pbeq1 = pos.pbeq1, Deq2 = Deq2, pos.pbeq2 = pos.pbeq2,
lsgam3 = lsgam3, robust = FALSE, sp.fixed = NULL,
lsgam4 = lsgam4, Sl.sf = Sl.sf, sp.method = sp.method,
lsgam5 = lsgam5, K1 = NULL,
lsgam6 = lsgam6,
lsgam7 = lsgam7,
lsgam8 = lsgam8,
X1 = X1,
X2 = X2,
X3 = X3,
X4 = X4,
X5 = X5,
X6 = X6,
X7 = X7,
X8 = X8,
X1.d2 = X1.d2,
X2.d2 = X2.d2,
X3.d2 = X3.d2,
X4.d2 = X4.d2,
X5.d2 = X5.d2,
X6.d2 = X6.d2,
X7.d2 = X7.d2,
X8.d2 = X8.d2,
gp1 = gp1,
gp2 = gp2,
gp3 = gp3,
gp4 = gp4,
gp5 = gp5,
gp6 = gp6,
gp7 = gp7,
gp8 = gp8,
l.sp1 = l.sp1,
l.sp2 = l.sp2,
l.sp3 = l.sp3,
l.sp4 = l.sp4,
l.sp5 = l.sp5,
l.sp6 = l.sp6,
l.sp7 = l.sp7,
l.sp8 = l.sp8, my.env = my.env,
infl.fac = infl.fac,
weights = weights,
fp = fp,
gamlssfit = gamlssfit,
hess = NULL,
Model = "CC", univ.gamls = FALSE,
end = end,
BivD = BivD, nCa = nCa,
nC = nC, gc.l = gc.l,
n = n, extra.regI = extra.regI,
parscale = parscale, margins = margins,
Cont = "YES", ccss = "no", m2 = m2, m3 = m3,
m1d = m1d, m2d = m2d, m3d = m3d,
bl = bl, triv = FALSE,
y1m = y1m, y2m = y2m,
tc = t.c,
i.rho = i.rho, dof = dof,
dof.st = dof.st, BivD2 = BivD2, cta = cta, ct = ct,
zerov = -10,
c11 = c11,
c10 = c10,
c01 = c01,
c00 = c00, surv = surv,
Xd1 = Xd1, Xd2 = Xd2,
mono.sm.pos1 = mono.sm.pos1, mono.sm.pos2 = mono.sm.pos2,
surv.flex = surv.flex,
mono.sm.pos = mono.sm.pos, gp2.inf = NULL,
informative = "no",
zero.tol = 1e-02,
min.dn = min.dn, min.pr = min.pr, max.pr = max.pr) # original n only needed in SemiParBIV.fit
if(gc.l == TRUE) gc()
##########################################################################################################################
##########################################################################################################################
# GAMLSS fit
##########################################################################################################################
##########################################################################################################################
if(gamlssfit == TRUE){
form.gamlR <- form.gaml(formula, l.flist, M)
surv1 <- surv2 <- surv
if(surv == TRUE && margins[1] %in% c(m2,m3) && margins[2] %in% bl ) surv1 <- FALSE
gamlss1 <- eval(substitute(gamlss(form.gamlR$formula.gamlss1, data = data, weights = weights, subset = subset,
margin = margins[1], surv = surv1, cens = cens1, infl.fac = infl.fac,
rinit = rinit, rmax = rmax, iterlimsp = iterlimsp, tolsp = tolsp,
gc.l = gc.l, parscale = 1, extra.regI = extra.regI, k.tvc = k1.tvc, drop.unused.levels = drop.unused.levels), list(weights=weights,cens1=cens1)))
gamlss2 <- eval(substitute(gamlss(form.gamlR$formula.gamlss2, data = data, weights = weights, subset = subset,
margin = margins[2], surv = surv2, cens = cens2, infl.fac = infl.fac,
rinit = rinit, rmax = rmax, iterlimsp = iterlimsp, tolsp = tolsp,
gc.l = gc.l, parscale = 1, extra.regI = extra.regI, k.tvc = k2.tvc, drop.unused.levels = drop.unused.levels), list(weights=weights,cens2=cens2)))
# updated starting values
SP <- list(sp1 = sp1, sp2 = sp2, sp3 = sp3, sp4 = sp4, sp5 = sp5, sp6 = sp6, sp7 = sp7, sp8 = sp8)
gamls.upsvR <- gamls.upsv(gamlss1, gamlss2, margins, M, l.flist, nstv = names(start.v), VC, GAM, SP)
sp <- gamls.upsvR$sp
start.v <- gamls.upsvR$start.v
}
##########################################################################################################################
##########################################################################################################################
func.opt <- func.OPT(margins, M)
SemiParFit <- SemiParBIV.fit(func.opt = func.opt, start.v = start.v,
rinit = rinit, rmax = rmax, iterlim = 100, iterlimsp = iterlimsp, tolsp = tolsp,
respvec = respvec, VC = VC, sp = sp, qu.mag = qu.mag)
##########################################################################################################################
# post estimation
##########################################################################################################################
SemiParFit.p <- copulaReg.fit.post(SemiParFit = SemiParFit, VC = VC, GAM)
y1.m <- y1; if(margins[1] == "LN") y1.m <- exp(y1)
y2.m <- y2; if(margins[2] == "LN") y2.m <- exp(y2)
SemiParFit <- SemiParFit.p$SemiParFit
if(gc.l == TRUE) gc()
##########################################################################################################################
cov.c(SemiParFit)
##########################################################################################################################
gam1$call$data <- gam2$call$data <- gam3$call$data <- gam4$call$data <- gam5$call$data <- gam6$call$data <- gam7$call$data <- gam8$call$data <- cl$data
# for all.terms
##########################################################################################################################
L <- list(fit = SemiParFit$fit, dataset = NULL, n = n, gamlss1 = gamlss1, gamlss2 = gamlss2, formula = formula, robust = FALSE,
edf11 = SemiParFit.p$edf11, surv = surv,
gam1 = gam1, gam2 = gam2, gam3 = gam3, gam4 = gam4, gam5 = gam5, gam6 = gam6, gam7 = gam7, gam8 = gam8,
coefficients = SemiParFit$fit$argument, coef.t = SemiParFit.p$coef.t,
iterlimsp = iterlimsp,
weights = weights, cens1 = cens1, cens2 = cens2, cens3 = cens3,
sp = SemiParFit.p$sp, iter.sp = SemiParFit$iter.sp,
l.sp1 = l.sp1, l.sp2 = l.sp2, l.sp3 = l.sp3,
l.sp4 = l.sp4, l.sp5 = l.sp5, l.sp6 = l.sp6, l.sp7 = l.sp7, l.sp8 = l.sp8, bl = bl,
fp = fp,
iter.if = SemiParFit$iter.if, iter.inner = SemiParFit$iter.inner,
theta = SemiParFit.p$theta,
theta.a = SemiParFit.p$theta.a,
sigma21 = SemiParFit.p$sigma21, sigma22 = SemiParFit.p$sigma22,
sigma21.a = SemiParFit.p$sigma21.a, sigma22.a = SemiParFit.p$sigma22.a,
sigma1 = SemiParFit.p$sigma21, sigma2 = SemiParFit.p$sigma22,
sigma1.a = SemiParFit.p$sigma21.a, sigma2.a = SemiParFit.p$sigma22.a,
nu1 = SemiParFit.p$nu1, nu2 = SemiParFit.p$nu2,
nu1.a = SemiParFit.p$nu1.a, nu2.a = SemiParFit.p$nu2.a,
dof.a = SemiParFit.p$dof.a, dof = SemiParFit.p$dof,
X1 = X1, X2 = X2, X3 = X3, X4 = X4, X5 = X5, X6 = X6, X7 = X7, X8 = X8,
X1.d2 = X1.d2, X2.d2 = X2.d2, X3.d2 = X3.d2,
X4.d2 = X4.d2, X5.d2 = X5.d2, X6.d2 = X6.d2, X7.d2 = X7.d2, X8.d2 = X8.d2,
He = SemiParFit.p$He, HeSh = SemiParFit.p$HeSh, Vb = SemiParFit.p$Vb, Ve = SemiParFit.p$Ve,
F = SemiParFit.p$F, F1 = SemiParFit.p$F1,
t.edf = SemiParFit.p$t.edf, edf = SemiParFit.p$edf,
edf1 = SemiParFit.p$edf1, edf2 = SemiParFit.p$edf2, edf3 = SemiParFit.p$edf3,
edf4 = SemiParFit.p$edf4, edf5 = SemiParFit.p$edf5, edf6 = SemiParFit.p$edf6, edf7 = SemiParFit.p$edf7,
edf8 = SemiParFit.p$edf8,
edf1.1 = SemiParFit.p$edf1.1, edf1.2 = SemiParFit.p$edf1.2, edf1.3 = SemiParFit.p$edf1.3,
edf1.4 = SemiParFit.p$edf1.4, edf1.5 = SemiParFit.p$edf1.5, edf1.6 = SemiParFit.p$edf1.6, edf1.7 = SemiParFit.p$edf1.7,
edf1.8 = SemiParFit.p$edf1.8,
R = SemiParFit.p$R,
bs.mgfit = SemiParFit$bs.mgfit, conv.sp = SemiParFit$conv.sp,
wor.c = SemiParFit$wor.c,
eta1 = SemiParFit$fit$eta1, eta2 = SemiParFit$fit$eta2,
etad=SemiParFit$fit$etad, etas1 = SemiParFit$fit$etas1, etas2 = SemiParFit$fit$etas2,
y1 = y1.m, y2 = y2.m,
BivD = BivD, margins = margins,
logLik = SemiParFit.p$logLik,
nC = nC,
respvec = respvec, hess = TRUE,
qu.mag = qu.mag,
gp1 = gp1, gp2 = gp2, gp3 = gp3, gp4 = gp4, gp5 = gp5, gp6 = gp6, gp7 = gp7, gp8 = gp8,
VC = VC, magpp = SemiParFit$magpp,
gamlssfit = gamlssfit, Cont = "YES",
tau = SemiParFit.p$tau, tau.a = SemiParFit.p$tau.a, l.flist = l.flist, v1 = v1, v2 = v2, triv = FALSE, univar.gamlss = FALSE,
BivD2 = BivD2, call = cl, surv = surv, surv.flex = surv.flex,
Vb.t = SemiParFit.p$Vb.t, coef.t = SemiParFit.p$coef.t)
if(BivD %in% BivD2){
L$teta1 <- SemiParFit$fit$teta1
L$teta.ind1 <- SemiParFit$fit$teta.ind1
L$teta2 <- SemiParFit$fit$teta2
L$teta.ind2 <- SemiParFit$fit$teta.ind2
L$Cop1 <- SemiParFit$fit$Cop1
L$Cop2 <- SemiParFit$fit$Cop2
}
class(L) <- c("gjrm","SemiParBIV")
}
L
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.