jc.probs3 <- function(x, y1, y2, newdata, type, cond, intervals, n.sim, prob.lev, cont1par, cont2par, cont3par, bin.link, min.pr, max.pr){
#############################################################################################
nu1 <- nu2 <- nu <- sigma2 <- 1
CIp12 <- dof <- p12s <- CIkt <- tau <- NULL
dof <- x$dof
#############################################################################################
#############################################################################################
if(type == "joint"){
if(!missing(newdata)){
p1 <- predict.SemiParBIV(x, eq = 1, newdata = newdata, type = "response")
p2 <- predict.SemiParBIV(x, eq = 2, newdata = newdata, type = "response")
if(!is.null(x$X3)) theta <- teta.tr(x$VC, predict.SemiParBIV(x, eq = 3, newdata = newdata))$teta
if(is.null(x$X3)) theta <- x$theta
}
if(missing(newdata)){
p1 <- x$p1
p2 <- x$p2
theta <- x$theta
}
p1 <- as.numeric(p1)
p2 <- as.numeric(p2)
theta <- as.numeric(theta)
if(x$BivD %in% x$BivD2){
nC1 <- x$VC$ct[which(x$VC$ct[,1] == x$Cop1),2]
nC2 <- x$VC$ct[which(x$VC$ct[,1] == x$Cop2),2]
p12 <- NA
if( length(x$teta1) != 0){
if(length(theta) > 1) p12[x$teta.ind1] <- mm(BiCDF(p1[x$teta.ind1], p2[x$teta.ind1], nC1, theta[x$teta.ind1]), min.pr = min.pr, max.pr = max.pr )
if(length(theta) == 1) p12[x$teta.ind1] <- mm(BiCDF(p1[x$teta.ind1], p2[x$teta.ind1], nC1, theta), min.pr = min.pr, max.pr = max.pr )
}
if( length(x$teta2) != 0){
if(length(theta) > 1) p12[x$teta.ind2] <- mm(BiCDF(p1[x$teta.ind2], p2[x$teta.ind2], nC2, theta[x$teta.ind2]), min.pr = min.pr, max.pr = max.pr )
if(length(theta) == 1) p12[x$teta.ind2] <- mm(BiCDF(p1[x$teta.ind2], p2[x$teta.ind2], nC2, theta), min.pr = min.pr, max.pr = max.pr )
}
}
if(!(x$BivD %in% x$BivD2)) p12 <- mm(BiCDF(p1, p2, x$nC, theta, dof), min.pr = min.pr, max.pr = max.pr )
if(y1 == 1 && y2 == 1){
p12 <- p12
if(cond == 1) p12 <- p12/p1
if(cond == 2) p12 <- p12/p2
}
if(y1 == 1 && y2 == 0){
p12 <- pmax(p1 - p12, min.pr)
if(cond == 1) p12 <- p12/p1
if(cond == 2) p12 <- p12/(1-p2)
}
if(y1 == 0 && y2 == 1){
p12 <- pmax(p2 - p12, min.pr)
if(cond == 1) p12 <- p12/(1-p1)
if(cond == 2) p12 <- p12/p2
}
if(y1 == 0 && y2 == 0){
p12 <- pmax(1 - p12 - pmax(p1 - p12, min.pr) - pmax(p2 - p12, min.pr) , min.pr)
if(cond == 1) p12 <- p12/(1-p1)
if(cond == 2) p12 <- p12/(1-p2)
}
####
# kendalls' tau
if(x$BivD %in% x$BivD2) {x$SemiParFit <- x; tau <- Reg2Copost(x$SemiParFit, x$VC, theta)$tau }
if(!(x$BivD %in% x$BivD2)) tau <- ass.ms(x$VC$BivD, x$VC$nCa, theta)$tau
####
if(intervals == TRUE){
bs <- rMVN(n.sim, mean = x$coefficients, sigma = x$Vb)
#############
# etas
#############
if(!missing(newdata)){ X1 <- predict.SemiParBIV(x, eq = 1, newdata = newdata, type = "lpmatrix")
X2s <- predict.SemiParBIV(x, eq = 2, newdata = newdata, type = "lpmatrix") }
if( missing(newdata)){ X1 <- x$X1
if(x$Model == "BSS") X2s <- x$X2s else X2s <- x$X2
}
p1s <- probm( X1%*%t(bs[,1:x$X1.d2]), x$VC$margins[1], min.dn = min.pr, min.pr = min.pr, max.pr = max.pr)$pr
p2s <- probm(X2s%*%t(bs[,(x$X1.d2+1):(x$X1.d2+x$X2.d2)]) , x$VC$margins[2], min.dn = min.pr, min.pr = min.pr, max.pr = max.pr)$pr
#############
# thetas # this may have to be changed when we have dof
#############
if(x$Model != "BPO0"){
if(is.null(x$X3)) epds <- bs[,length(x$coefficients)]
if(!is.null(x$X3)){
if(!missing(newdata)){ X3s <- predict.SemiParBIV(x, eq = 3, newdata = newdata, type = "lpmatrix") }
if( missing(newdata)){ if(x$Model == "BSS") X3s <- x$X3s else X3s <- x$X3 }
epds <- X3s%*%t(bs[,(x$X1.d2+x$X2.d2+1):(x$X1.d2+x$X2.d2+x$X3.d2)])
}
est.RHOb <- teta.tr(x$VC, epds)$teta
}
if(x$Model == "BPO0") est.RHOb <- rep(0, n.sim )
if( is.null(x$X3) ) est.RHOb <- matrix(rep(est.RHOb, each = dim(p1s)[1]), ncol = n.sim, byrow=FALSE)
#############
if(x$VC$BivD %in% c("N","T")) p12s <- matrix(mm(BiCDF(p1s, p2s, x$nC, est.RHOb, dof, test = FALSE), min.pr = min.pr, max.pr = max.pr ), dim(p1s)[1], n.sim) else{
if(!(x$BivD %in% x$BivD2)) p12s <- matrix(mm(BiCDF(p1s, p2s, x$nC, est.RHOb, dof, test = FALSE), min.pr = min.pr, max.pr = max.pr ), dim(p1s)[1], n.sim)
if(x$BivD %in% x$BivD2){
p12s <- matrix(NA, ncol = n.sim, nrow = dim(p1s)[1])
if( length(x$teta1) != 0) p12s[x$teta.ind1,] <- mm(BiCDF(p1s[x$teta.ind1,], p2s[x$teta.ind1,], nC1, est.RHOb[x$teta.ind1,]), min.pr = min.pr, max.pr = max.pr )
if( length(x$teta2) != 0) p12s[x$teta.ind2,] <- mm(BiCDF(p1s[x$teta.ind2,], p2s[x$teta.ind2,], nC2, -est.RHOb[x$teta.ind2,]), min.pr = min.pr, max.pr = max.pr )
}
}
if(y1 == 1 && y2 == 1){
if(cond == 1) p12s <- p12s/p1s
if(cond == 2) p12s <- p12s/p2s
}
if(y1 == 1 && y2 == 0){
p12s <- pmax(p1s - p12s, min.pr)
if(cond == 1) p12s <- p12s/p1s
if(cond == 2) p12s <- p12s/(1-p2s)
}
if(y1 == 0 && y2 == 1){
p12s <- pmax(p2s - p12s, min.pr)
if(cond == 1) p12s <- p12s/(1-p1s)
if(cond == 2) p12s <- p12s/p2s
}
if(y1 == 0 && y2 == 0){
p12s <- pmax(1 - p12s - pmax(p1s - p12s, min.pr) - pmax(p2s - p12s, min.pr) , min.pr)
if(cond == 1) p12s <- p12s/(1-p1s)
if(cond == 2) p12s <- p12s/(1-p2s)
}
nCa <- x$VC$nCa
BivDt <- x$VC$BivD
if(x$BivD %in% x$BivD2){
if(x$BivD %in% x$BivD2[c(1:4,13:16)]) { BivDt <- "C0"; nCa <- 3}
if(x$BivD %in% x$BivD2[5:8]) { BivDt <- "J0"; nCa <- 6}
if(x$BivD %in% x$BivD2[9:12]){ BivDt <- "G0"; nCa <- 4}
}
ass.msR <- ass.ms(BivDt, nCa, est.RHOb)
taus <- ass.msR$tau
if(!is.null(x$X3) && BivDt %in% c("AMH", "FGM")) taus <- matrix(taus, nrow(x$X3), nrow(bs))
CIkt <- rowQuantiles(taus, probs = c(prob.lev/2,1-prob.lev/2), na.rm = TRUE)
#if( is.null(x$X3) ) CIkt <- t(CIkt)
if(x$BivD %in% x$BivD2){
if(length(x$theta) > 1){
if( length(x$teta2) != 0) CIkt[x$teta.ind2, ] <- -CIkt[x$teta.ind2, ]; CIkt[x$teta.ind2, c(1,2)] <- CIkt[x$teta.ind2, c(2,1)]
}else{
if( length(x$teta2) != 0) CIkt <- -CIkt; CIkt[, c(1,2)] <- CIkt[, c(2,1)]
}
}
}
}
#############################################################################################
#############################################################################################
#############################################################################################
if(type == "independence"){
if(!missing(newdata)){
p1 <- probm( predict.SemiParBIV(x, eq = 1, newdata = newdata, type = "lpmatrix")%*%x$gam1$coefficients, x$VC$margins[1], min.dn = min.pr, min.pr = min.pr, max.pr = max.pr)$pr
p2 <- probm( predict.SemiParBIV(x, eq = 2, newdata = newdata, type = "lpmatrix")%*%x$gam2$coefficients, x$VC$margins[2], min.dn = min.pr, min.pr = min.pr, max.pr = max.pr)$pr
}
if(missing(newdata)){
p1 <- probm( predict.SemiParBIV(x, eq = 1, type = "lpmatrix")%*%x$gam1$coefficients, x$VC$margins[1], min.dn = min.pr, min.pr = min.pr, max.pr = max.pr)$pr
p2 <- probm( predict.SemiParBIV(x, eq = 2, type = "lpmatrix")%*%x$gam2$coefficients, x$VC$margins[2], min.dn = min.pr, min.pr = min.pr, max.pr = max.pr)$pr
}
p1 <- as.numeric(p1)
p2 <- as.numeric(p2)
if(y1 == 1 && y2 == 1){
p12 <- p1*p2
if(cond == 1) p12 <- p2
if(cond == 2) p12 <- p1
}
if(y1 == 1 && y2 == 0){
p12 <- p1*(1-p2)
if(cond == 1) p12 <- 1-p2
if(cond == 2) p12 <- p1
}
if(y1 == 0 && y2 == 1){
p12 <- (1-p1)*p2
if(cond == 1) p12 <- p2
if(cond == 2) p12 <- 1-p1
}
if(y1 == 0 && y2 == 0){
p12 <- (1-p1)*(1-p2)
if(cond == 1) p12 <- (1-p2)
if(cond == 2) p12 <- (1-p1)
}
if(intervals == TRUE){
bs1 <- rMVN(n.sim, mean = x$gam1$coefficients, sigma=x$gam1$Vp)
bs2 <- rMVN(n.sim, mean = x$gam2$coefficients, sigma=x$gam2$Vp)
if(!missing(newdata)){
p1s <- probm( predict.SemiParBIV(x, eq = 1, newdata = newdata, type = "lpmatrix")%*%t(bs1[,1:x$X1.d2]), x$VC$margins[1], min.dn = min.pr, min.pr = min.pr, max.pr = max.pr)$pr
p2s <- probm( predict.SemiParBIV(x, eq = 2, newdata = newdata, type = "lpmatrix")%*%t(bs2[,1:x$X2.d2]), x$VC$margins[2], min.dn = min.pr, min.pr = min.pr, max.pr = max.pr)$pr
}
if(missing(newdata)){
p1s <- probm( predict.SemiParBIV(x, eq = 1, type = "lpmatrix")%*%t(bs1[,1:x$X1.d2]), x$VC$margins[1], min.dn = min.pr, min.pr = min.pr, max.pr = max.pr)$pr
p2s <- probm( predict.SemiParBIV(x, eq = 2, type = "lpmatrix")%*%t(bs2[,1:x$X2.d2]), x$VC$margins[2], min.dn = min.pr, min.pr = min.pr, max.pr = max.pr)$pr
}
if(y1 == 1 && y2 == 1){
p12s <- p1s*p2s
if(cond == 1) p12s <- p2s
if(cond == 2) p12s <- p1s
}
if(y1 == 1 && y2 == 0){
p12s <- p1s*(1-p2s)
if(cond == 1) p12s <- 1-p2s
if(cond == 2) p12s <- p1s
}
if(y1 == 0 && y2 == 1){
p12s <- (1-p1s)*p2s
if(cond == 1) p12s <- p2s
if(cond == 2) p12s <- 1-p1s
}
if(y1 == 0 && y2 == 0){
p12s <- (1-p1s)*(1-p2s)
if(cond == 1) p12s <- (1-p2s)
if(cond == 2) p12s <- (1-p1s)
}
} # inter
} # indep
list(p12 = p12, p12s = p12s, p1 = p1, p2 = p2, p3 = NULL, CIkt = CIkt, tau = tau)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.