summary.gamlss <- function(object, n.sim = 100, prob.lev = 0.05, ...){
bs <- SE <- Vb <- epds <- sigma2.st <- sigma2 <- nu.st <- nu <- est.RHOb <- XX <- Xt <- V <- 1
cont1par <- c(object$VC$m1d, object$VC$bl)
cont2par <- c(object$VC$m2,object$VC$m2d)
cont3par <- c(object$VC$m3,object$VC$m3d)
n <- object$n
lf <- length(object$coefficients)
if(object$VC$surv.flex == FALSE) Vb <- object$Vb else Vb <- object$Vb.t
SE <- sqrt(diag(Vb))
bs <- rMVN(n.sim, mean = object$coefficients, sigma = Vb) # this is not correct when surv.flex == TRUE but actually I need no sampling here for output so ok
#######
# CIs
#######
susutsnR <- susutsn(object, bs, lf, cont1par, cont2par, cont3par, prob.lev, type = "gamls")
CIsig2 <- susutsnR$CIsig21
CInu <- susutsnR$CInu1
CImu <- susutsnR$CImu
mu <- susutsnR$mu
#########################
if(object$VC$gc.l == TRUE) gc()
susuR <- susu(object, SE, Vb, informative = object$VC$informative)
tableN <- susuR$tableN
table <- susuR$table
#########################
rm(bs, SE, Vb, XX, Xt, V)
res <- list(tableP1=table[[1]], tableP2=table[[2]], tableP3=table[[3]],
tableP4=table[[4]], tableP5=table[[5]], tableP6=table[[6]], tableP7=table[[7]], tableP8=table[[8]],
tableNP1=tableN[[1]], tableNP2=tableN[[2]], tableNP3=tableN[[3]],
tableNP4=tableN[[4]], tableNP5=tableN[[5]], tableNP6=tableN[[6]], tableNP7=tableN[[7]], tableNP8=tableN[[8]],
n=n,
sigma2=object$sigma2, sigma=object$sigma2,
nu=object$nu,
sigma2.a=object$sigma2.a, sigma.a=object$sigma2.a,
nu.a=object$nu.a,
formula = object$formula,
formula1=object$gam1$formula, formula2=object$gam2$formula, formula3=object$gam3$formula,
formula4=object$gam4$formula, formula5=object$gam5$formula, formula6=object$gam6$formula,
formula7=object$gam7$formula, formula8=object$gam8$formula,
t.edf=object$t.edf, CImu = CImu, mu = mu,
CIsig=CIsig2, CInu=CInu,
margins = object$margins,
l.sp1 = object$l.sp1, l.sp2 = object$l.sp2, l.sp3 = object$l.sp3,
l.sp4 = object$l.sp4, l.sp5 = object$l.sp5, l.sp6 = object$l.sp6,
l.sp7 = object$l.sp7, l.sp8 = object$l.sp8,
X2.null = is.null(object$X2), univar.gamlss = TRUE, surv.flex = object$surv.flex, K1 = NULL,
robust = object$robust, indx = object$fit$indx)
class(res) <- "summary.gamlss"
res
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.