dynamicMultiJGL: Title: A dynamic network model estimator from continuous...

View source: R/dynamicMultiJGL.R

dynamicMultiJGLR Documentation

Title: A dynamic network model estimator from continuous grouping variables

Description

Title: A dynamic network model estimator from continuous grouping variables

Usage

dynamicMultiJGL(
  node.covariates = node.covariates,
  response = response,
  segment.width = 1/2,
  rate = 1/10,
  penalty.lin = "fused",
  penalty.nonlin = "fused",
  lin_lambda1 = 0.025,
  lin_lambda2 = 0.01,
  nonlin_lambda1 = 0.025,
  nonlin_lambda2 = 0.01,
  tol.linear = 1e-05,
  tol.nonlinear = 1e-05,
  subsample.pseudo_obs = FALSE,
  omit.rate = 2L
)

Arguments

node.covariates

An nxp dimensional matrix of p covariates measured over n samples.

response

A continuous response vector.

segment.width

An empirical distribution segment width.

rate

Defines the step length for the segment slidings.

penalty.lin

Specify "fused" or "group" penalty type for the linear JGL algorithm.

penalty.nonlin

Specify "fused" or "group" penalty type for the nonlinear JGL algorithm. #See the explanation for the fused and group penalties in the JGL package #The original JGL CRAN repository: https://CRAN.R-project.org/package=JGL #The following penalty parameters are given in pairs to – #separately assign the amount of regularizations for linear and nonlinear parts

lin_lambda1

The l1-penalty parameter for the linear JGL to regulate within group network densities

lin_lambda2

The l1-penalty parameter for the nonlinear JGL.

nonlin_lambda1

The fusion penalty parameter for the linear JGL.

nonlin_lambda2

The fusion penalty parameter for the nonlinear JGL.

tol.linear

Convergence criterion for the linear part (see the JGL package for details).

tol.nonlinear

Convergence criterion for the nonlinear part. #Subsampling procedure over pseudo-observations if the number of observations is large already in the original sets.

subsample.pseudo_obs

Should the subsampling procedure be used over the pseudo-observations.

omit.rate

An integer: Omit rate for the subsampling pcocedure between 2L and 5L

Examples

 print("net <- dynamic_NLJGL(node.covariates, grouping.factor)")

KontioJuho/multiJGL documentation built on Oct. 30, 2022, 3:42 a.m.