View source: R/dynamicMultiJGL.R
dynamicMultiJGL | R Documentation |
Title: A dynamic network model estimator from continuous grouping variables
dynamicMultiJGL( node.covariates = node.covariates, response = response, segment.width = 1/2, rate = 1/10, penalty.lin = "fused", penalty.nonlin = "fused", lin_lambda1 = 0.025, lin_lambda2 = 0.01, nonlin_lambda1 = 0.025, nonlin_lambda2 = 0.01, tol.linear = 1e-05, tol.nonlinear = 1e-05, subsample.pseudo_obs = FALSE, omit.rate = 2L )
node.covariates |
An nxp dimensional matrix of p covariates measured over n samples. |
response |
A continuous response vector. |
segment.width |
An empirical distribution segment width. |
rate |
Defines the step length for the segment slidings. |
penalty.lin |
Specify "fused" or "group" penalty type for the linear JGL algorithm. |
penalty.nonlin |
Specify "fused" or "group" penalty type for the nonlinear JGL algorithm. #See the explanation for the fused and group penalties in the JGL package #The original JGL CRAN repository: https://CRAN.R-project.org/package=JGL #The following penalty parameters are given in pairs to – #separately assign the amount of regularizations for linear and nonlinear parts |
lin_lambda1 |
The l1-penalty parameter for the linear JGL to regulate within group network densities |
lin_lambda2 |
The l1-penalty parameter for the nonlinear JGL. |
nonlin_lambda1 |
The fusion penalty parameter for the linear JGL. |
nonlin_lambda2 |
The fusion penalty parameter for the nonlinear JGL. |
tol.linear |
Convergence criterion for the linear part (see the JGL package for details). |
tol.nonlinear |
Convergence criterion for the nonlinear part. #Subsampling procedure over pseudo-observations if the number of observations is large already in the original sets. |
subsample.pseudo_obs |
Should the subsampling procedure be used over the pseudo-observations. |
omit.rate |
An integer: Omit rate for the subsampling pcocedure between 2L and 5L |
print("net <- dynamic_NLJGL(node.covariates, grouping.factor)")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.