multiJGL: Linear and nonlinear multiclass network estimation with joint...

View source: R/multiJGL.R

multiJGLR Documentation

Linear and nonlinear multiclass network estimation with joint regularization over categorical groups

Description

Linear and nonlinear multiclass network estimation with joint regularization over categorical groups

Usage

multiJGL(
  node.covariates = node.covariates,
  grouping.factor = grouping.factor,
  penalty.lin = "fused",
  penalty.nonlin = "fused",
  lin_lambda1 = 0.1,
  lin_lambda2 = 0.025,
  nonlin_lambda1 = 0.1,
  nonlin_lambda2 = 0.025,
  tol.linear = 1e-05,
  tol.nonlinear = 1e-05,
  subsample.pseudo_obs = FALSE,
  omit.rate = 2L,
  ...
)

Arguments

node.covariates

An nxp dimensional matrix of p covariates measured over n samples.

grouping.factor

A grouping factor for creating observational classes.

penalty.lin

Specify "fused" or "group" penalty type for the linear JGL algorithm.

penalty.nonlin

Specify "fused" or "group" penalty type for the nonlinear JGL algorithm. #See the explanation for the fused and group penalties in the JGL package #The original JGL CRAN repository: https://CRAN.R-project.org/package=JGL #The following penalty parameters are given in pairs to – #separately assign the amount of regularizations for linear and nonlinear parts

lin_lambda1

The l1-penalty parameter for the linear JGL to regulate within group network densities

lin_lambda2

The l1-penalty parameter for the nonlinear JGL.

nonlin_lambda1

The fusion penalty parameter for the linear JGL.

nonlin_lambda2

The fusion penalty parameter for the nonlinear JGL.

tol.linear

Convergence criterion for the linear part (see the JGL package for details).

tol.nonlinear

Convergence criterion for the nonlinear part. #Subsampling procedure over pseudo-observations if the number of observations is large already in the original sets.

subsample.pseudo_obs

Should the subsampling procedure be used over the pseudo-observations.

omit.rate

An integer: Omit rate for the subsampling pcocedure between 2L and 5L

...

Additional parameter for the nonlinear JGL.

Examples

 print("net <- multiJGL(node.covariates, grouping.factor)")

KontioJuho/multiJGL documentation built on Oct. 30, 2022, 3:42 a.m.