multiJGL | R Documentation |
Linear and nonlinear multiclass network estimation with joint regularization over categorical groups
multiJGL( node.covariates = node.covariates, grouping.factor = grouping.factor, penalty.lin = "fused", penalty.nonlin = "fused", lin_lambda1 = 0.1, lin_lambda2 = 0.025, nonlin_lambda1 = 0.1, nonlin_lambda2 = 0.025, tol.linear = 1e-05, tol.nonlinear = 1e-05, subsample.pseudo_obs = FALSE, omit.rate = 2L, ... )
node.covariates |
An nxp dimensional matrix of p covariates measured over n samples. |
grouping.factor |
A grouping factor for creating observational classes. |
penalty.lin |
Specify "fused" or "group" penalty type for the linear JGL algorithm. |
penalty.nonlin |
Specify "fused" or "group" penalty type for the nonlinear JGL algorithm. #See the explanation for the fused and group penalties in the JGL package #The original JGL CRAN repository: https://CRAN.R-project.org/package=JGL #The following penalty parameters are given in pairs to – #separately assign the amount of regularizations for linear and nonlinear parts |
lin_lambda1 |
The l1-penalty parameter for the linear JGL to regulate within group network densities |
lin_lambda2 |
The l1-penalty parameter for the nonlinear JGL. |
nonlin_lambda1 |
The fusion penalty parameter for the linear JGL. |
nonlin_lambda2 |
The fusion penalty parameter for the nonlinear JGL. |
tol.linear |
Convergence criterion for the linear part (see the JGL package for details). |
tol.nonlinear |
Convergence criterion for the nonlinear part. #Subsampling procedure over pseudo-observations if the number of observations is large already in the original sets. |
subsample.pseudo_obs |
Should the subsampling procedure be used over the pseudo-observations. |
omit.rate |
An integer: Omit rate for the subsampling pcocedure between 2L and 5L |
... |
Additional parameter for the nonlinear JGL. |
print("net <- multiJGL(node.covariates, grouping.factor)")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.