View source: R/subsample_multiJGL.R
subsample_multiJGL | R Documentation |
Function for running multiJGL algorithm across subsamples and different sparsity levels
subsample_multiJGL( node.covariates = node.covariates, grouping.factor = grouping.factor, lambda.seq, by_value, num_repetitions = 10, penalty.lin = "fused", penalty.nonlin = "fused", lin_lambda1 = lambda.seq1[j], lin_lambda2 = 0.025, nonlin_lambda1 = lambda.seq1[j], nonlin_lambda2 = 0.025, tol.linear = 1e-05, tol.nonlinear = 1e-05, subsample.pseudo_obs = FALSE, omit.rate = 2L )
node.covariates |
An nxp dimensional matrix of p covariates measured over n samples. |
grouping.factor |
A grouping factor for creating observational classes. |
lambda.seq |
The range of different lambda values |
by_value |
Specifies the density of lambda grid |
num_repetitions |
The number of subsample analyses |
penalty.lin |
Specify "fused" or "group" penalty type for the linear JGL algorithm. |
penalty.nonlin |
Specify "fused" or "group" penalty type for the nonlinear JGL algorithm. |
lin_lambda1 |
The l1-penalty parameter for the linear JGL to regulate within group network densities |
lin_lambda2 |
The l1-penalty parameter for the nonlinear JGL. |
nonlin_lambda1 |
The fusion penalty parameter for the linear JGL. |
nonlin_lambda2 |
The fusion penalty parameter for the nonlinear JGL. |
tol.linear |
Convergence criterion for the linear part (see the JGL package for details). |
tol.nonlinear |
Convergence criterion for the nonlinear part. |
subsample.pseudo_obs |
Should the subsampling procedure be used over the pseudo-observations. |
omit.rate |
An integer: Omit rate for the subsampling pcocedure between 2L and 5L |
print("")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.