subsample_multiJGL: Function for running multiJGL algorithm across subsamples and...

View source: R/subsample_multiJGL.R

subsample_multiJGLR Documentation

Function for running multiJGL algorithm across subsamples and different sparsity levels

Description

Function for running multiJGL algorithm across subsamples and different sparsity levels

Usage

subsample_multiJGL(
  node.covariates = node.covariates,
  grouping.factor = grouping.factor,
  lambda.seq,
  by_value,
  num_repetitions = 10,
  penalty.lin = "fused",
  penalty.nonlin = "fused",
  lin_lambda1 = lambda.seq1[j],
  lin_lambda2 = 0.025,
  nonlin_lambda1 = lambda.seq1[j],
  nonlin_lambda2 = 0.025,
  tol.linear = 1e-05,
  tol.nonlinear = 1e-05,
  subsample.pseudo_obs = FALSE,
  omit.rate = 2L
)

Arguments

node.covariates

An nxp dimensional matrix of p covariates measured over n samples.

grouping.factor

A grouping factor for creating observational classes.

lambda.seq

The range of different lambda values

by_value

Specifies the density of lambda grid

num_repetitions

The number of subsample analyses

penalty.lin

Specify "fused" or "group" penalty type for the linear JGL algorithm.

penalty.nonlin

Specify "fused" or "group" penalty type for the nonlinear JGL algorithm.

lin_lambda1

The l1-penalty parameter for the linear JGL to regulate within group network densities

lin_lambda2

The l1-penalty parameter for the nonlinear JGL.

nonlin_lambda1

The fusion penalty parameter for the linear JGL.

nonlin_lambda2

The fusion penalty parameter for the nonlinear JGL.

tol.linear

Convergence criterion for the linear part (see the JGL package for details).

tol.nonlinear

Convergence criterion for the nonlinear part.

subsample.pseudo_obs

Should the subsampling procedure be used over the pseudo-observations.

omit.rate

An integer: Omit rate for the subsampling pcocedure between 2L and 5L

Examples

print("")

KontioJuho/multiJGL documentation built on Oct. 30, 2022, 3:42 a.m.