#' Classify `algae_traits` nad calculates densities
#'
#' @param algae_traits algae_traits
#' @param classifiers_constant constant temperature classifier
#' @param classifiers_increasing increasing temperature classifier
#' @param composition composition
#' @param exp_design experimental design
#' @param species_tracked species tracked
#' @param timestamp timestamp to be used to stamp the classified data
#'
#' @return `list` containing two objects:
#' - `algae_traits` including species
#' - `algae_densities` densities of the differenc particles identifieds
#' @export
#'
#' @md
#'
#' @examples
classify_LEEF_1 <- function(
algae_traits,
classifiers_constant,
classifiers_increasing,
composition,
exp_design,
species_tracked,
timestamp
){
# 0. Load in experiment design and add to algae_traits df
algae_traits <- dplyr::left_join(algae_traits, exp_design, "bottle")
# 2. Make a list of 32 dataframes: split morph_mvt based on species combination and temperature regime
algae_traits_list <- split(x = algae_traits,
f = algae_traits$bottle,
drop = TRUE)
# 3. Predict species identities in the 32 dfs based on the 32 rf classifiers
for (i in seq_along(algae_traits_list)) {
df <- algae_traits_list[[i]]
temperature_treatment <- unique(df$temperature) # either "constant" or "increasing"
composition_id <- unique(df$composition) # a char between c_01 and c_16
noNAs <- !rowSums(is.na(df)) > 0
if (temperature_treatment == "constant") {
pr <- predict(classifiers_constant[[composition_id]], df, probability = TRUE)
df$species[noNAs] <- as.character(pr) # species prediction
df$species_probability[noNAs] <- apply(attributes(pr)$probabilities, 1, max) # probability of each species prediction
probabilities <- attributes(pr)$probabilities
colnames(probabilities) <- paste0(colnames(probabilities),"_prob")
df <- cbind(df, probabilities)
} else {
pr <- predict(classifiers_increasing[[composition_id]], df, probability = TRUE)
df$species[noNAs] <- as.character(pr) # species prediction
df$species_probability[noNAs] <- apply(attributes(pr)$probabilities, 1, max) # probability of each species prediction
probabilities <- attributes(pr)$probabilities
colnames(probabilities) <- paste0(colnames(probabilities),"_prob")
df <- cbind(df, probabilities)
}
algae_traits_list[[i]] <- df
}
# 4. Merge the 32 dfs back into a single df: algae_traits
algae_traits <- purrr::reduce(algae_traits_list, dplyr::full_join)
#############################################################
# calculate species densities -------------------------------------------------------------------------
#############################################################
algae_density <- algae_traits %>%
group_by(
Date_Flowcam,
species,
bottle,
composition,
temperature,
incubator,
volume_imaged,
dilution_factor,
richness
) %>%
summarise(count = n()) %>%
mutate(density = count * dilution_factor / volume_imaged)
# -----------------------------------------------------------------------------------------------------
# add density = 0 for extinct species ------------------------------------------------------------
comp_id <- unique(composition$composition)
composition <- composition %>%
dplyr::select(tidyselect::any_of(species_tracked))
composition.list <- apply(composition, 1, function(x) {
idx <- which(x == 1)
names(idx)
})
names(composition.list) <- comp_id
algae_density_list <- split(x = algae_density,
f = algae_density$bottle,
drop = T)
for (i in seq_along(algae_density_list)) {
df <- algae_density_list[[i]]
ID <- unique(df$composition)
idx <- which(!is.element(unlist(composition.list[ID]), df$species))
if (length(idx) == 0) next
for (j in idx) {
new.entry <- tail(df, 1)
new.entry$species <- composition.list[[ID]][j]
new.entry$density <- 0
new.entry$count <- 0
df <- rbind(df, new.entry)
}
algae_density_list[[i]] <- df
}
algae_density <- do.call("rbind", algae_density_list) %>%
filter(species %in% species_tracked)
algae_traits$timestamp <- timestamp
algae_density$timestamp <- timestamp
return(
list(
algae_traits = algae_traits,
algae_density = algae_density
)
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.