#' @title Calculate spatial response or dependence figures.
#' @description Calculate spatially marginal, independence, and SHAP-based
#' response figures. They can help to diagnose both how and where the species
#' responses to environmental variables.
#' @param model (`isolation_forest`). It could
#' be the item `model` of `POIsotree` made by function \code{\link{isotree_po}}.
#' @param var_occ (`data.frame`, `tibble`) The `data.frame` style table that
#' include values of environmental variables at occurrence locations.
#' @param variables (`stars`) The `stars` of environmental variables.
#' It should have multiple `attributes` instead of `dims`.
#' If you have `raster` object instead, you
#' could use \code{\link{st_as_stars}} to convert it to `stars` or use
#' \code{\link{read_stars}} directly read source data as a `stars`.
#' You also could use item `variables` of `POIsotree` made by function
#' \code{\link{isotree_po}}.
#' @param shap_nsim (`integer`) The number of Monte Carlo repetitions in SHAP
#' method to use for estimating each Shapley value. See details in documentation
#' of function \code{\link{explain}} in package `fastshap`. Set it to 0 if you
#' don't want to make SHAP-based spatial dependence. When the number of variables
#' is large, a smaller shap_nsim could be used. Be cautious that making
#' SHAP-based spatial dependence will be slow because of Monte-Carlo
#' computation for all pixels. But it is worth the time because it is much more
#' informative. See details in documentation of function \code{\link{explain}}
#' in package `fastshap`. The default is 0. Usually a value 10 - 20 is enough.
#' @param seed (`integer`) The seed for any random progress. The default is `10L`.
#' @param visualize (`logical`) if `TRUE`, plot the response curves.
#' The default is `FALSE`.
#'
#' @return (`SpatialResponse`) A list of
#' \itemize{
#' \item{spatial_marginal_response (`list`) A list of `stars` object of spatially
#' marginal response of all variables}
#' \item{spatial_independent_response (`list`) A list of `stars` object of spatially
#' independent response of all variables}
#' \item{spatial_shap_dependence (`list`) A list of `stars` object of spatially
#' SHAP-based response of all variables}
#' }
#'
#' @details
#' The values show how each environmental variable affects the modeling
#' prediction in space. These maps could help to answer questions of where in
#' terms of environmental response. Compared to marginal dependence or
#' independent dependence maps, SHAP-based maps are way more informative because
#' SHAP-based dependence explain the contribution of each variable to final result.
#'
#' @seealso
#' \code{\link{plot.SpatialResponse}}
#'
#' @importFrom isotree isolation.forest
#' @importFrom dplyr select slice mutate as_tibble pull n %>% group_by
#' @importFrom stars st_as_stars
#' @importFrom stats predict setNames
#' @importFrom tidyselect all_of
#' @importFrom fastshap explain
#' @importFrom rlang :=
#' @export
#' @examples
#' # Using a pseudo presence-only occurrence dataset of
#' # virtual species provided in this package
#' library(dplyr)
#' library(sf)
#' library(stars)
#' library(itsdm)
#'
#' # Prepare data
#' data("occ_virtual_species")
#' obs_df <- occ_virtual_species %>% filter(usage == "train")
#' eval_df <- occ_virtual_species %>% filter(usage == "eval")
#' x_col <- "x"
#' y_col <- "y"
#' obs_col <- "observation"
#'
#' # Format the observations
#' obs_train_eval <- format_observation(
#' obs_df = obs_df, eval_df = eval_df,
#' x_col = x_col, y_col = y_col, obs_col = obs_col,
#' obs_type = "presence_only")
#'
#' env_vars <- system.file(
#' 'extdata/bioclim_tanzania_10min.tif',
#' package = 'itsdm') %>% read_stars() %>%
#' slice('band', c(1, 5, 12))
#'
#' # With imperfect_presence mode,
#' mod <- isotree_po(
#' obs_mode = "imperfect_presence",
#' obs = obs_train_eval$obs,
#' obs_ind_eval = obs_train_eval$eval,
#' variables = env_vars, ntrees = 20,
#' sample_size = 0.8, ndim = 1L,
#' seed = 123L, nthreads = 1,
#' response = FALSE,
#' spatial_response = FALSE,
#' check_variable = FALSE)
#'
#' spatial_responses <- spatial_response(
#' model = mod$model,
#' var_occ = mod$vars_train,
#' variables = mod$variables,
#' shap_nsim = 1)
#' plot(spatial_responses)
#' #'
spatial_response <- function(model,
var_occ,
variables,
shap_nsim = 0,
seed = 10L,
visualize = FALSE) {
# Check inputs
checkmate::assert_data_frame(var_occ)
checkmate::assert_class(variables, 'stars')
stopifnot(length(dim(variables)) <= 2)
checkmate::assert_int(shap_nsim)
checkmate::assert_int(seed)
checkmate::assert_logical(visualize)
bands <- names(variables)
stopifnot(all(bands %in% colnames(var_occ)))
# Reformat data
## Split numeric and categorical
isfacor <- as.vector(sapply(variables, is.factor))
bands_cont <- bands[!isfacor]
bands_cat <- bands[isfacor]
# Do full prediction
## Raster
var_pred_full <- predict(variables, model)
## Stretch result to be comparable with other results
var_pred_full <- 1 - var_pred_full
############ marginal response
# Get means and expand
means <- do.call(c, lapply(bands, function(nm) {
if (nm %in% bands_cont) {
val <- mean(var_occ %>% pull(nm), na.rm = T)
variables[nm] %>% mutate('{nm}' := val)
} else {
val <- .mode(var_occ %>% pull(nm))
variables[nm] %>% mutate('{nm}' := val)
}}))
mar_spatial <- lapply(bands, function(nm) {
vals_tmp <- means
vals_tmp <- vals_tmp %>% select(-nm)
vals_tmp <- c(vals_tmp, variables %>% select(nm))
pred_tmp <- predict(vals_tmp, model)
pred_tmp <- 1 - pred_tmp
.stars_stretch(var_pred_full, new_values = pred_tmp)
})
names(mar_spatial) <- bands
############ independent response
models <- lapply(bands, function(nm) {
ind_var_occ <- var_occ %>% select(nm)
# Remove and modify some arguments not works
# for single-variable model, other arguments
# inherit from model object.
args_iforest <- c(
list(data=ind_var_occ, seed=model$random_seed, nthreads=model$nthreads),
model$params
)
args_iforest$ndim <- 1
args_iforest$ncols_per_tree <- min(ncol(args_iforest$data),
args_iforest$ncols_per_tree)
if (args_iforest$new_categ_action == "impute") {
args_iforest$new_categ_action <- "weighted"
}
do.call(isolation.forest, args_iforest)}) %>%
setNames(bands)
ind_spatial <- lapply(bands, function(nm) {
vals_tmp <- variables %>% select(nm)
pred_tmp <- predict(vals_tmp, models[[nm]])
pred_tmp <- 1 - pred_tmp
.stars_stretch(var_pred_full, new_values = pred_tmp)
})
names(ind_spatial) <- bands
############ SHAP variable dependence
if (shap_nsim > 0){
shap_spatial <- shap_spatial_response(
model = model,
var_occ = var_occ,
variables = variables,
shap_nsim = shap_nsim,
seed = seed,
pfun = .pfun_shap)
} else {
shap_spatial <- NULL
}
# Reunion
spatial_deps <- list(spatial_marginal_response = mar_spatial,
spatial_independent_response = ind_spatial,
spatial_shap_dependence = shap_spatial)
class(spatial_deps) <- append("SpatialResponse", class(spatial_deps))
# Visualize
if (visualize) {
print(plot(spatial_deps))
}
# Return
return(spatial_deps)
}
# spatial_response end
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.