# library(testthat); library(BiocNeighbors); source("setup.R"); source("test-queryNeighbors.R")
set.seed(999999)
test_that("queryNeighbors works with basic options", {
Y <- matrix(rnorm(10000), ncol=20)
Z <- matrix(rnorm(2000), ncol=20)
d <- median(queryKNN(Y, Z, k=8, get.index=FALSE)$distance[,8])
out <- queryNeighbors(Y, Z, threshold=d)
ref <- refQueryNeighbors(Y, Z, threshold=d)
expect_equal(out, ref)
d <- median(queryKNN(Y, Z, k=8, get.index=FALSE, BNPARAM=KmknnParam(distance="Manhattan"))$distance[,8])
out <- queryNeighbors(Y, Z, threshold=d, BNPARAM=KmknnParam(distance="Manhattan"))
ref <- refQueryNeighbors(Y, Z, threshold=d, type="manhattan")
expect_equal(out, ref)
})
test_that("queryNeighbors works in parallel", {
Y <- matrix(rnorm(10000), ncol=20)
Z <- matrix(rnorm(2000), ncol=20)
d <- median(queryKNN(Y, Z, k=5, get.index=FALSE)$distance[,5])
out <- queryNeighbors(Y, Z, threshold=d)
pout <- queryNeighbors(Y, Z, threshold=d, num.threads=2)
expect_identical(out, pout)
pout <- queryNeighbors(Y, Z, threshold=d, BPPARAM=BiocParallel::SnowParam(2))
expect_identical(out, pout)
})
test_that("queryNeighbors works with subsets", {
Y <- matrix(rnorm(10000), ncol=20)
Z <- matrix(rnorm(2000), ncol=20)
d <- median(queryKNN(Y, Z, k=3, get.index=FALSE)$distance[,3])
out <- queryNeighbors(Y, Z, threshold=d)
sout <- queryNeighbors(Y, Z, subset=1:10, threshold=d)
out$index <- out$index[1:10]
out$distance <- out$distance[1:10]
expect_identical(out, sout)
out <- queryNeighbors(Y[0,,drop=FALSE], Z, threshold=d)
expect_identical(lengths(out$index), integer(nrow(Z)))
expect_identical(lengths(out$distance), integer(nrow(Z)))
})
test_that("queryNeighbors works with prebuilt indices", {
Y <- matrix(rnorm(10000), ncol=20)
Z <- matrix(rnorm(2000), ncol=20)
d <- median(queryKNN(Y, Z, k=3, get.index=FALSE)$distance[,3])
built <- buildIndex(Y, threshold=d)
out <- queryNeighbors(Y, Z, threshold=d)
preout <- queryNeighbors(built, Z, threshold=d)
expect_identical(out, preout)
# Unaffected by BNPARAM settings at this point.
preout <- queryNeighbors(built, Z, threshold=d, BNPARAM=AnnoyParam())
expect_identical(out, preout)
# Throws an error for deserialized prebuilt indices.
tmp <- tempfile(fileext=".rds")
saveRDS(built, tmp)
expect_error(queryNeighbors(readRDS(tmp), Z, threshold=d), "null pointer")
})
test_that("queryNeighbors works when inputs are transposed", {
Y <- matrix(rnorm(10000), ncol=20)
Z <- matrix(rnorm(2000), ncol=20)
d <- median(queryKNN(Y, Z, k=3, get.index=FALSE)$distance[,3])
out <- queryNeighbors(Y, Z, threshold=d)
tout <- queryNeighbors(t(Y), t(Z), threshold=d, transposed=TRUE)
expect_identical(out, tout)
})
test_that("queryNeighbors works with variable outputs", {
Y <- matrix(rnorm(10000), ncol=20)
Z <- matrix(rnorm(2000), ncol=20)
d <- median(queryKNN(Y, Z, k=8, get.index=FALSE)$distance[,8])
out <- queryNeighbors(Y, Z, threshold=d)
iout <- queryNeighbors(Y, Z, threshold=d, get.distance=FALSE)
expect_null(iout$distance)
expect_identical(iout$index, out$index)
dout <- queryNeighbors(Y, Z, threshold=d, get.index=FALSE)
expect_null(dout$index)
expect_identical(dout$distance, out$distance)
count <- queryNeighbors(Y, Z, threshold=d, get.index=FALSE, get.distance=FALSE)
expect_identical(count, lengths(out$index))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.