#' A tools4ukbb function
#' Function output: output of the dx_date, dx_age, and dx_hx functions (either subsetted or attached to the original phenotype dataframe)
#'
#' @param icd_list a list of the icd10 codes you wish to investigate
#' @param dataframe the originial phenotype dataframe containing all individuals in the ukbiobank (~500,000 cols x 18,000 rows as of 09/07/2021)
#' @param disease_name a string containing the name of the disease(s) of interest
#' @param requested the columns requested. Strings containing "date" will call the dx_date function; "age", the dx_age function; and, "hx", the dx_hx function.
#' Therefore, "datehx", "dataandhx" and "date_hx" will all call the dx_date and dx_age functions.
#' @param combined this column indicates if you would like to recieve the requested column(s) joined with the whole phenotype dataframe (TRUE) or the subsetted, dx_positive, dataframe (FALSE)
#' @keywords info
#' @export
#' @examples
#' ukb_info()
ukb_info <- function(icd_list, dataframe, disease_name) {
indiv_with_disease <- individuals_with_disease(icd_list, dataframe)
dx_positive<- filter(dataframe, is_in(eid, indiv_with_disease[[1]]))
eid_df <- select(dx_positive, eid)
date_dx <- dx_date(icd_list, disease_name, dataframe) %>% left_join(eid_df, by ="eid")
age_dx <- dx_age(icd_list, disease_name, dataframe) %>% left_join(eid_df, by ="eid")
hx_dx <- dx_hx(icd_list, disease_name, dataframe) %>% left_join(eid_df, by ="eid")
date_age <- left_join(date_dx, age_dx)
hx_date_age <- left_join(date_age, hx_dx)
final <- hx_date_age[,colSums(is.na(hx_date_age))<nrow(hx_date_age)]
final
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.