#' Complete-Random Tree Forest implementation in R
#'
#' This function attempts to replicate Complete-Random Tree Forests using xgboost. It performs Random Forest \code{n_forest} times using \code{n_trees} trees. You can specify your learning objective using \code{objective} and the metric to check for using \code{eval_metric}. You can plug custom objectives instead of the objectives provided by \code{xgboost}. As with any uncalibrated machine learning methods, this method suffers uncalibrated outputs. Therefore, the usage of scale-dependent metrics is discouraged (please use scale-invariant metrics, such as Accuracy, AUC, R-squared, Spearman correlation...).
#'
#' For implementation details of Cascade Forest / Complete-Random Tree Forest / Multi-Grained Scanning / Deep Forest, check this: \url{https://github.com/Microsoft/LightGBM/issues/331#issuecomment-283942390} by Laurae.
#'
#' Actually, this function creates a layer of a Cascade Forest. That layer is comprised of two possible elements: Complete-Random Tree Forests (using PFO mode: Probability Averaging + Full Height + Original training samples) and Random Forests. You may choose between them.
#'
#' Complete-Random Tree Forests in PFO mode are the best random learners inside the Complete-Random Tree Forest families (at least 50% higher winrate against other families, including Random Forest). The major issue is their randomness which lowers their performance until they are fully extended for maximum performance: it takes a long time to train them properly until the features are so obvious they learn nearly instantly in one run of training. Therefore, they are extremely prone to underfitting, and a \code{CascadeForest} should be used to improve their performance combined with one or multiple Random Forest.
#'
#' Laurae recommends using xgboost or LightGBM on top of gcForest or Cascade Forest. See the rationale here: \url{https://github.com/Microsoft/LightGBM/issues/331#issuecomment-284689795}.
#'
#' @param training_data Type: data.table. The training data.
#' @param validation_data Type: data.table. The validation data with labels to check for metric performance. Set to \code{NULL} if you want to use out of fold validation data instead of a custom validation data set.
#' @param training_labels Type: numeric vector. The training labels.
#' @param validation_labels Type: numeric vector. The validation labels.
#' @param folds Type: list. The folds as list for cross-validation.
#' @param nthread Type: numeric. The number of threads using for multithreading. 1 means singlethread (uses only one core). Higher may mean faster training if the memory overhead is not too large. Defaults to \code{1}.
#' @param lr Type: numeric. The shrinkage affected to each tree to avoid overfitting. Defaults to \code{1}, which means no adjustment.
#' @param training_start Type: numeric vector. The initial training prediction labels. Set to \code{NULL} if you do not know what you are doing. Defaults to \code{NULL}.
#' @param validation_start Type: numeric vector. The initial validation prediction labels. Set to \code{NULL} if you do not know what you are doing. Defaults to \code{NULL}.
#' @param n_forest Type: numeric. The number of forest models to create for the Complete-Random Tree Forest. Defaults to \code{5}.
#' @param n_trees Type: numeric. The number of trees per forest model to create for the Complete-Random Tree Forest. Defaults to \code{1000}.
#' @param random_forest Type: numeric. The number of Random Forest in the forest. Defaults to \code{0}.
#' @param seed Type: numeric. Random seed for reproducibility. Defaults to \code{0}.
#' @param objective Type: character or function. The function which leads \code{boosting} loss. See \code{xgboost::xgb.train}. Defaults to \code{"reg:linear"}.
#' @param eval_metric Type: function. The function which evaluates \code{boosting} loss. Must take two arguments in the following order: \code{preds, labels} (they may be named in another way) and returns a metric. Defaults to \code{Laurae::df_rmse}.
#' @param return_list Type: logical. Whether lists should be returned instead of concatenated frames for predictions. Defaults to \code{TRUE}.
#' @param multi_class Type: numeric. Defines the number of classes internally for whether you are doing multi class classification or not to use specific routines for multiclass problems when using \code{return_list == FALSE}. Defaults to \code{2}, which is for regression and binary classification.
#' @param verbose Type: character. Whether to print for training evaluation. Use \code{""} for no printing (double quotes without space between quotes). Defaults to \code{" "} (double quotes with space between quotes.
#' @param garbage Type: logical. Whether to perform garbage collect regularly. Defaults to \code{FALSE}.
#' @param work_dir Type: character, allowing concatenation with another character text (ex: "dev/tools/save_in_this_folder/" = add slash, or "dev/tools/save_here/prefix_" = don't add slash). The working directory to store models. If you provide a working directory, the models will be saved inside that directory (and all other models will get wiped if they are under the same names). It will lower severely the memory usage as the models will not be saved anymore in memory. Combined with \code{garbage == TRUE}, you achieve the lowest possible memory usage in this Deep Forest implementation. Defaults to \code{NULL}, which means store models in memory.
#'
#' @return A data.table based on \code{target}.
#'
#' @examples
#' \dontrun{
#' # Load libraries
#' library(data.table)
#' library(Matrix)
#' library(xgboost)
#'
#' # Create data
#' data(agaricus.train, package = "lightgbm")
#' data(agaricus.test, package = "lightgbm")
#' agaricus_data_train <- data.table(as.matrix(agaricus.train$data))
#' agaricus_data_test <- data.table(as.matrix(agaricus.test$data))
#' agaricus_label_train <- agaricus.train$label
#' agaricus_label_test <- agaricus.test$label
#' folds <- Laurae::kfold(agaricus_label_train, 5)
#'
#' # Train a model (binary classification)
#' model <- CRTreeForest(training_data = agaricus_data_train, # Training data
#' validation_data = agaricus_data_test, # Validation data
#' training_labels = agaricus_label_train, # Training labels
#' validation_labels = agaricus_label_test, # Validation labels
#' folds = folds, # Folds for cross-validation
#' nthread = 1, # Change this to use more threads
#' lr = 1, # Do not touch this unless you are expert
#' training_start = NULL, # Do not touch this unless you are expert
#' validation_start = NULL, # Do not touch this unless you are expert
#' n_forest = 5, # Number of forest models
#' n_trees = 10, # Number of trees per forest
#' random_forest = 2, # We want only 2 random forest
#' seed = 0,
#' objective = "binary:logistic",
#' eval_metric = Laurae::df_logloss,
#' return_list = TRUE, # Set this to FALSE for a data.table output
#' multi_class = 2, # Modify this for multiclass problems
#' verbose = " ")
#'
#' # Attempt to perform fake multiclass problem
#' agaricus_label_train[1:100] <- 2
#'
#' # Train a model (multiclass classification)
#' model <- CRTreeForest(training_data = agaricus_data_train, # Training data
#' validation_data = agaricus_data_test, # Validation data
#' training_labels = agaricus_label_train, # Training labels
#' validation_labels = agaricus_label_test, # Validation labels
#' folds = folds, # Folds for cross-validation
#' nthread = 1, # Change this to use more threads
#' lr = 1, # Do not touch this unless you are expert
#' training_start = NULL, # Do not touch this unless you are expert
#' validation_start = NULL, # Do not touch this unless you are expert
#' n_forest = 5, # Number of forest models
#' n_trees = 10, # Number of trees per forest
#' random_forest = 2, # We want only 2 random forest
#' seed = 0,
#' objective = "multi:softprob",
#' eval_metric = Laurae::df_logloss,
#' return_list = TRUE, # Set this to FALSE for a data.table output
#' multi_class = 3, # Modify this for multiclass problems
#' verbose = " ")
#' }
#'
#' @export
CRTreeForest <- function(training_data,
validation_data,
training_labels,
validation_labels,
folds,
nthread = 1,
lr = 1,
training_start = NULL,
validation_start = NULL,
n_forest = 5,
n_trees = 1000,
random_forest = 0,
seed = 0,
objective = "reg:linear",
eval_metric = Laurae::df_rmse,
return_list = TRUE,
multi_class = 2,
verbose = " ",
garbage = FALSE,
work_dir = NULL) {
model <- list()
train_preds <- list()
valid_preds <- list()
logger <- list()
logger[[1]] <- list()
logger[[2]] <- numeric(n_forest)
features_used <- list()
premade_folds <- !(is.null(validation_data))
out_of_memory <- !is.null(work_dir)
model_path <- list()
# Setup train_means / valid_means
if (multi_class > 2) {
# Setup train
train_means <- data.table(matrix(rep(0, nrow(training_data) * multi_class), nrow = nrow(training_data), ncol = multi_class))
# Are we using premade folds?
if (!premade_folds) {
# Using training data
valid_means <- data.table(matrix(rep(0, nrow(training_data) * multi_class), nrow = nrow(training_data), ncol = multi_class))
} else {
# Using validation data
valid_means <- data.table(matrix(rep(0, nrow(validation_data) * multi_class), nrow = nrow(validation_data), ncol = multi_class))
}
# Name columns
colnames(train_means) <- paste0("Label_", sprintf(paste0("%0", floor(log10(multi_class)) + 1, "d"), 1:multi_class))
colnames(valid_means) <- paste0("Label_", sprintf(paste0("%0", floor(log10(multi_class)) + 1, "d"), 1:multi_class))
} else {
# Setup train
train_means <- numeric(nrow(training_data))
# Are we using premade folds?
if (!premade_folds) {
# Using training data
valid_means <- numeric(nrow(training_data))
} else {
# Using validation data
valid_means <- numeric(nrow(validation_data))
}
}
# Loop through the forest
for (i in 1:n_forest) {
# Check for Random Forest
if (i <= random_forest) {
# Setup parameters for Random Forest
column_sampling_tree <- 1
column_sampling_level <- ceiling(sqrt(ncol(training_data))) / ncol(training_data)
row_sampling <- 0.632
features_used[[i]] <- 1:ncol(training_data)
} else {
# Setup parameters not for Random Forest
column_sampling_tree <- ceiling(sqrt(ncol(training_data)))
column_sampling_level <- 1/(column_sampling_tree)
row_sampling <- 1
# Sample features
set.seed(seed + i)
features_used[[i]] <- sample(1:ncol(training_data), column_sampling_tree)
}
# Are we doing multiclass?
if (multi_class > 2) {
train_preds[[i]] <- data.table(matrix(rep(0, nrow(training_data) * multi_class), nrow = nrow(training_data), ncol = multi_class))
if (!premade_folds) {
valid_preds[[i]] <- data.table(matrix(rep(0, nrow(training_data) * multi_class), nrow = nrow(training_data), ncol = multi_class))
} else {
valid_preds[[i]] <- data.table(matrix(rep(0, nrow(validation_data) * multi_class), nrow = nrow(validation_data), ncol = multi_class))
}
} else {
train_preds[[i]] <- numeric(nrow(training_data))
if (!premade_folds) {
valid_preds[[i]] <- numeric(nrow(training_data))
} else {
valid_preds[[i]] <- numeric(nrow(validation_data))
}
}
# More initialization
model[[i]] <- list()
logger[[1]][[i]] <- numeric(length(folds))
model_path[[i]] <- list() # Even if not used, it will be used for directory detection for predictions
for (j in 1:length(folds)) {
# Split data
to_train_data <- Laurae::DTcolsample(training_data, kept = features_used[[i]])
train_data <- Laurae::DTsubsample(to_train_data, kept = (1:nrow(training_data))[-folds[[j]]], remove = FALSE)
test_data <- Laurae::DTsubsample(to_train_data, kept = folds[[j]], remove = FALSE)
train_data <- xgb.DMatrix(data = Laurae::DT2mat(train_data), label = training_labels[(1:nrow(training_data))[-folds[[j]]]], base_margin = training_start[(1:nrow(training_data))[-folds[[j]]]])
test_data <- xgb.DMatrix(data = Laurae::DT2mat(test_data), label = training_labels[folds[[j]]], base_margin = training_start[folds[[j]]])
if (premade_folds) {
to_validate_data <- Laurae::DTcolsample(validation_data, kept = features_used[[i]])
validate_data <- xgb.DMatrix(data = Laurae::DT2mat(to_validate_data), label = validation_labels, base_margin = validation_start)
} else {
validate_data <- test_data
}
if (garbage) {gc(verbose = FALSE)}
# Train model while checking for multiclass routines
if (multi_class > 2) {
# Multiclass training
set.seed(seed + i)
model[[i]][[j]] <- xgb.train(params = list(booster = "gbtree",
eta = lr,
max_depth = 99999,
max_leaves = 99999,
colsample_bytree = 1,
colsample_bylevel = column_sampling_level,
subsample = row_sampling,
num_parallel_tree = n_trees),
nthread = nthread,
data = train_data,
nrounds = 1,
verbose = 0,
watchlist = list(test = validate_data),
objective = objective,
num_class = multi_class)
if (garbage) {gc(verbose = FALSE)}
# Predict out of fold predictions
train_preds[[i]][folds[[j]]] <- data.table(predict(model[[i]][[j]], test_data, reshape = TRUE))
# Check for validation
if (!premade_folds) {
valid_preds[[i]][folds[[j]]] <- train_preds[[i]][folds[[j]]]
logger[[1]][[i]][j] <- eval_metric(valid_preds[[i]][folds[[j]]], training_labels[folds[[j]]])
} else {
temp_preds <- data.table(predict(model[[i]][[j]], validate_data, reshape = TRUE))
logger[[1]][[i]][j] <- eval_metric(temp_preds, validation_labels)
valid_preds[[i]] <- (temp_preds / length(folds)) + valid_preds[[i]]
}
# Save model out of memory?
if (out_of_memory) {
# Store path
model_path[[i]][[j]] <- paste0(work_dir, "Forest", sprintf(paste0("%0", floor(log10(n_forest)) + 1, "d"), i), "_Fold", sprintf(paste0("%0", floor(log10(length(folds))) + 1, "d"), j))
# Save model
model_save <- xgb.save(model[[i]][[j]], model_path[[i]][[j]])
# Overwrite current model with path
model[[i]][[j]] <- model_path[[i]][[j]]
}
} else {
# Binary class or regression training
set.seed(seed + i)
model[[i]][[j]] <- xgb.train(params = list(booster = "gbtree",
eta = lr,
max_depth = 99999,
max_leaves = 99999,
colsample_bytree = 1,
colsample_bylevel = column_sampling_level,
subsample = row_sampling,
num_parallel_tree = n_trees),
nthread = nthread,
data = train_data,
nrounds = 1,
verbose = 0,
watchlist = list(test = validate_data),
objective = objective)
if (garbage) {gc(verbose = FALSE)}
# Predict out of fold predictions
train_preds[[i]][folds[[j]]] <- predict(model[[i]][[j]], test_data, reshape = TRUE)
# Check for validation
if (!premade_folds) {
valid_preds[[i]][folds[[j]]] <- train_preds[[i]][folds[[j]]]
logger[[1]][[i]][j] <- eval_metric(valid_preds[[i]][folds[[j]]], training_labels[folds[[j]]])
} else {
temp_preds <- predict(model[[i]][[j]], validate_data, reshape = TRUE)
logger[[1]][[i]][j] <- eval_metric(temp_preds, validation_labels)
valid_preds[[i]] <- (temp_preds / length(folds)) + valid_preds[[i]]
}
# Save model out of memory?
if (out_of_memory) {
# Store path
model_path[[i]][[j]] <- paste0(work_dir, "Forest", sprintf(paste0("%0", floor(log10(n_forest)) + 1, "d"), i), "_Fold", sprintf(paste0("%0", floor(log10(length(folds))) + 1, "d"), j))
# Save model
model_save <- xgb.save(model[[i]][[j]], model_path[[i]][[j]])
# Overwrite current model with path
model[[i]][[j]] <- model_path[[i]][[j]]
}
}
# Clear up old matrices
rm(train_data, test_data, validate_data)
if (garbage) {gc(verbose = FALSE)}
}
# Name elements
names(model[[i]]) <- paste0("Fold_", sprintf(paste0("%0", floor(log10(length(folds))) + 1, "d"), 1:length(folds)))
# Add to aggregate data
train_means <- train_means + (train_preds[[i]] / n_forest)
valid_means <- valid_means + (valid_preds[[i]] / n_forest)
# Print cross-validation
if (!(verbose == "")) {
cat(verbose, "Forest ", sprintf(paste0("%0", floor(log10(n_forest)) + 1, "d"), i), ": ", sprintf("%08.06f", mean(logger[[1]][[i]])), "+", sprintf("%08.06f", sd(logger[[1]][[i]])), "\n", sep = "")
}
}
# paste0("Fold_", sprintf(paste0("%0", floor(log10(length(folds))) + 1, "d"), 1:length(folds)))
names(model) <- paste0("Forest_", sprintf(paste0("%0", floor(log10(n_forest)) + 1, "d"), 1:n_forest))
names(logger[[1]]) <- paste0("Log_", sprintf(paste0("%0", floor(log10(n_forest)) + 1, "d"), 1:n_forest))
names(train_preds) <- paste0("Forest_", sprintf(paste0("%0", floor(log10(n_forest)) + 1, "d"), 1:n_forest))
# Parse logger
logger[[1]] <- Laurae::cbindlist(logger[[1]])
# Create new logger
logger[[2]] <- eval_metric(valid_means, if (!premade_folds) {training_labels} else {validation_labels})
# Print average forest
if (!(verbose == "")) {
cat(verbose, "Average Forest: ", sprintf("%08.06f", logger[[2]]), "\n", sep = "")
}
# Do we want data.tables instead of lists?
if (return_list == FALSE) {
# Is the problem a multiclass problem? (exports list of data.table instead of list of vector)
if (multi_class > 2) {
# Rename each column
for (i in 1:n_forest) {
colnames(train_preds[[i]]) <- paste0("Forest_", sprintf(paste0("%0", floor(log10(n_forest)) + 1, "d"), i), "_", sprintf(paste0("%0", floor(log10(ncol(train_preds[[i]]))) + 1, "d"), 1:ncol(train_preds[[i]])))
}
train_dt <- train_preds[[1]]
# Do we have more than one model in forest?
if (n_forest > 1) {
# Attempt to bind each data.table together
for (i in 2:n_forest) {
train_dt <- Laurae::DTcbind(train_dt, train_preds[[i]])
}
}
# Deeply overwrite original table
train_preds <- copy(train_dt)
} else {
# Only vectors, so we can cbindlist directly
train_preds <- Laurae::cbindlist(train_preds)
}
if (garbage) {gc(verbose = FALSE)}
}
# Do the same for validation
# Prepame accordingly
names(valid_preds) <- paste0("Forest_", sprintf(paste0("%0", floor(log10(n_forest)) + 1, "d"), 1:n_forest))
# Do we want data.tables instead of lists?
if (return_list == FALSE) {
# Is the problem a multiclass problem? (exports list of data.table instead of list of vector)
if (multi_class > 2) {
# Rename each column
for (i in 1:n_forest) {
colnames(valid_preds[[i]]) <- paste0("Forest_", sprintf(paste0("%0", floor(log10(n_forest)) + 1, "d"), i), "_", sprintf(paste0("%0", floor(log10(ncol(valid_preds[[i]]))) + 1, "d"), 1:ncol(valid_preds[[i]])))
}
valid_dt <- valid_preds[[1]]
# Do we have more than one model in forest?
if (n_forest > 1) {
# Attempt to bind each data.table together
for (i in 2:n_forest) {
valid_dt <- Laurae::DTcbind(valid_dt, valid_preds[[i]])
}
}
# Deeply overwrite original table
valid_preds <- copy(valid_dt)
} else {
# Only vectors, so we can cbindlist directly
valid_preds <- Laurae::cbindlist(valid_preds)
}
if (garbage) {gc(verbose = FALSE)}
}
# Return data with validation
return(list(model = model,
logger = logger,
train_means = train_means,
valid_means = valid_means,
train_preds = train_preds,
valid_preds = valid_preds,
features = features_used,
multi_class = multi_class,
folds = folds,
work_dir = list(work_dir, model_path)))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.