#' Perform the uncorrected analysis
#'
#' @param data data to be used
#' @return numeric vector with the coefficient of the uncorrected analysis, the
#' standard error of the estimated coefficient and the confidence interval
perform_uncor <- function(data){
uncor_fit <- lm(Y ~ X_star_1 + Z,
data = data)
effect <- coef(uncor_fit)[2]
se <- summary(uncor_fit)$coefficients[2, 2]
ci <- confint(uncor_fit)[2, ]
names(ci) <- c("lower", "upper")
return(c(
effect = unname(effect),
se = se,
ci = ci
))
}
#' Perform measurement error correction by means of mecor
#'
#' @param data data to be used
#' @return numeric vector with the coefficient of the corrected analysis, the
#' standard error of the estimated coefficient and the confidence interval based
#' on the bootstrap
perform_mecor <- function(data){
cols_no_reps <- grep("X_star", colnames(data))
var <- mean(apply(data[, cols_no_reps],
1,
var))
mecor_fit <- mecor::mecor(
Y ~ mecor::MeasErrorRandom(X_star_1,
var) + Z,
data = data,
method = "standard",
B = 999
)
effect <- mecor_fit$corfit$coef[2]
se <- summary(mecor_fit)$c$coefficients[2, 2]
ci <- summary(mecor_fit)$c$ci[2, 2:3]
names(ci) <- c("lower", "upper")
return(c(
effect = unname(effect),
se = se,
ci = ci
))
}
#' Perform measurement error correction by means of simex
#'
#' @param data data to be used
#' @return numeric vector with the coefficient of the corrected analysis, the
#' standard error of the estimated coefficient and the confidence interval based
#' on the jackknife variance component in simex
perform_simex <- function(data){
cols_no_reps <- grep("X_star", colnames(data))
naive_fit <- lm(Y ~ X_star_1 + Z,
data = data,
x = TRUE)
var <- mean(apply(data[, cols_no_reps],
1,
var))
simex_fit <- simex::simex(naive_fit,
"X_star_1",
measurement.error = sqrt(var))
effect <- simex_fit$coefficients[2]
se <- sqrt(simex_fit$variance.jackknife[2, 2])
ci <- effect + c(qnorm(0.025), qnorm(0.975)) * se
names(ci) <- c("lower", "upper")
return(c(
effect = unname(effect),
se = se,
ci = ci
))
}
#' Get the estimated effect of the three different analyses
#'
#' @param data data used to estimate the effects
#' @return named vector with 'uncor.*' the uncorrected effect, se and ci,
#' 'mecor.*' the measurement error corrected effect by means of mecor, se and ci
#' and 'simex.*' the measurement error corrected effect by means of simex, se
#' and ci
get_est_effects <- function(data){
effect_uncor <- perform_uncor(data)
effect_mecor <- perform_mecor(data)
effect_simex <- perform_simex(data)
effects <- c(uncor = effect_uncor,
mecor = effect_mecor,
simex = effect_simex)
return(effects)
}
#' Get R-squared of the outcome model (Y ~ X + Z)
#'
#' @param data data used to estimate R-squared
#' @return named vector with r_squared, the r squared of the outcome model
get_r_squared <- function(data){
cor_fit <- lm(Y ~ X + Z,
data = data)
r_squared <- summary(cor_fit)$r.squared
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.