#' Classificatory discriminant analysis
#' @export
classif.lda <- function(object, crossval="indiv") {
# .checkClass(object, "morphodata")
if (!inherits(object, "morphodata")) stop("object not of class \"morphodata\"")
# matica musi byt plna
if (any(is.na(object$data))) stop("NA values in 'object'.", call. = FALSE)
if (crossval!="indiv" & crossval!="pop") stop("Invalid crossvalidation unit. Consider using \"indiv\" or \"pop\".", call. = FALSE)
ntax<-length(levels(object$Taxon))
char<-colnames(object$data)
res = .newClassifdata()
if (crossval=="indiv")
{
lda.res = MASS::lda(object$Taxon ~ . , data=object$data, CV=TRUE, prior = rep(1/ntax,ntax))
lda.res$means = .calcMeans(object)
# lda.res$class
# class = array(NA, dim = c(s, ntax)) ## group means
# for(i in 1:s) {
# for (j in 1:ntax) {
# class[i,j] = class.funs[1,j]+sum(x[i,]*class.funs[-1,j])
# }
# }
# lda.res$class = factor(max.col(class), levels = lda.res$lev)
res$classif.funs = .classFuns(object)
res$ID = as.character(object$ID)
res$Population = object$Population
res$Taxon = object$Taxon
res$classif = lda.res$class
res$prob = round(lda.res$posterior, digits = 4)
}
else if (crossval=="pop")
{
#levels(res$Population) = levels(object$Population)
# SKUSKA
xx = array(NA, dim = c(ncol(object$data)+1, ntax, length(levels(object$Population))),
dimnames = list(c("constant", colnames(object$data)), levels(object$Taxon), levels(object$Population)))
for (i in levels(object$Population)) {
samp = .keepByColumn(object, "Population", i)
train = .removeByColumn(object, "Population", i)
#lda.train = MASS::lda(stats::as.formula(paste("train$Taxon ~ ", paste(char, collapse = "+"))), data = train$data, prior = rep(1/ntax,ntax))
lda.train = MASS::lda(train$Taxon ~ . , data = train$data, prior = rep(1/ntax,ntax))
# SKUSKA
cf = .classFuns(train)
for (col in colnames(cf) ) {
xx[,col,i] = cf[,col]
}
lda.samp = stats::predict(lda.train, samp$data)
res$ID = c(res$ID, as.character(object$ID[which(i == object$Population)]))
res$Population = c(res$Population, as.character(object$Population[object$Population == i] ))
res$Taxon = c(res$Taxon, as.character(object$Taxon[object$Population == i] ))
res$classif = c(res$classif, as.character(lda.samp$class))
res$prob = rbind(res$prob, round(lda.samp$posterior, digits = 4))
}
res$Population = as.factor(res$Population)
res$Taxon = as.factor(res$Taxon)
res$classif = as.factor(res$classif)
res$classif.funs = apply(xx,c(1,2),mean) # SKUSKA
}
res$correct = data.frame("correct" = as.character( res$Taxon) == as.character(res$classif))
rownames(res$correct) = res$ID
#res$classif = data.frame("classification" = res$classif)
#rownames(res$classif) = res$ID
res$prob = as.data.frame(res$prob)
attr(res, "method") <- "lda"
return(res)
}
.classFuns <- function(object) {
ntax<-length(levels(object$Taxon))
v <- ncol(object$data) ## variables
s <- nrow(object$data) ## variables
char<-colnames(object$data)
m = .calcMeans(object)
w <- array(NA, dim = c(v, v, ntax), dimnames = list(colnames(object$data), colnames(object$data), levels(object$Taxon)))
for(i in levels(object$Taxon)){
tmp <- scale(subset(object$data, object$Taxon == i), scale = FALSE)
w[,,i] <- t(tmp) %*% tmp
}
W <- w[,,1]
for(i in 2:ntax)
W <- W + w[,,i]
V <- W/(nrow(object$data) - ntax)
iV <- solve(V, tol = -Inf) # inac to blbne
class.funs <- matrix(NA, nrow = v + 1, ncol = ntax)
colnames(class.funs) <- levels(object$Taxon)
rownames(class.funs) <- c("constant", colnames(object$data))
for(i in 1:ntax) {
class.funs[1, i] <- -0.5 * t(m[i,]) %*% iV %*% (m[i,])
class.funs[2:(v+1) ,i] <- iV %*% (m[i,])
}
return(class.funs)
}
.calcMeans <- function(object) {
ntax<-length(levels(object$Taxon))
v <- ncol(object$data) ## variables
char<-colnames(object$data)
xm = array(NA, dim = c(ntax, v), dimnames = list(levels(object$Taxon), char)) ## group means
for(i in levels(object$Taxon)){
xm[i,] = apply(object$data[object$Taxon == i, ], 2, mean)
}
return(xm)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.