Description Usage Arguments Value Examples
Given the output from processPathways(), creates a heatmap from the ouput of the GREAT enrichment analysis. Presence or absence of the pathway in enrichment of both type-specific (increased or decreased log2fold change, low p-value) and shared (no change, higher p-value) regulatory regions is plotted.
1 2 3 4 5 | plotGREATenrich(input, maintitle = "GREAT Enrichment Analysis",
pathwaycateg = NULL, test = "Binom", numshow = 10,
maintitlesize = "20px", ylabelsize = "10px", xlabelsize = "10px",
xlabel = NULL, subtitle = "(color corresponds to p-value)",
subtitlesize = "13px")
|
input |
results from GREAT enrichment analysis |
maintitle |
main title (default, "GREAT Enrichment Analysis") |
pathwaycateg |
ontology, to see available ontologies in your input results (e.g. named GREATpathways, type getOntologies(GREATpathways) |
test |
character, "Binom" uses binomial test restuls, "Hyper" uses hypergeometric test results. Default is "Binom" |
numshow |
number of top pathways (ranked according to p-value) of each type (expt, reference, shared) to show in the plot (default=10) |
maintitlesize |
main title size (default, 20px) |
ylabelsize |
size of ylabel (default, 10px) |
xlabelsize |
size of xlabel (default, 10px) |
xlabel |
label for x-axis (default, Experiment-specific, shared, Reference-specific ) |
subtitle |
subtitle (default, "color corresponds to p-value") |
subtitlesize |
subitle size (default 15px) |
heatmap
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | ## Not run:
csvfile <- loadCSVFile("DNaseEncodeExample.csv")
samplePeaks <- loadBedFiles(csvfile)
consensusPeaks <- getConsensusPeaks(samplepeaks = samplePeaks, minreps = 2)
TSSannot <- getTSS()
consensusPeaksAnnotated <- combineAnnotatePeaks(conspeaks = consensusPeaks,
TSS = TSSannot,
merge = TRUE,
regionspecific = TRUE,
distancefromTSSdist = 1500,
distancefromTSSprox = 1000)
consensusPeaksCounts <- getCounts(annotpeaks = consensusPeaksAnnotated,
reference = 'SAEC',
sampleinfo = csvfile,
chrom = 'chr21')
alteredPeaks <- countanalysis(counts=consensusPeaksCounts,
pval=0.01,
lfcvalue=1)
alteredPeaksCategorized <- categAltrePeaks(analysisresults = alteredPeaks,
lfctypespecific = 1.5,
lfcshared = 1.2,
pvaltypespecific = 0.01,
pvalshared = 0.05)
callPaths <- runGREAT(peaks = alteredPeaksCategorized)
pathResults <- processPathways(callPaths, pathway_category = "GO",
enrichcutoff = 2, adjpvalcutoff = 0.05)
plotGREATenrich(pathResults, maintitle = "GREAT Enrichment Analysis",
pathwaycateg = "GO_Molecular_Function")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.