plotGREATenrich: Given the output from processPathways(), creates a heatmap...

Description Usage Arguments Value Examples

Description

Given the output from processPathways(), creates a heatmap from the ouput of the GREAT enrichment analysis. Presence or absence of the pathway in enrichment of both type-specific (increased or decreased log2fold change, low p-value) and shared (no change, higher p-value) regulatory regions is plotted.

Usage

1
2
3
4
5
plotGREATenrich(input, maintitle = "GREAT Enrichment Analysis",
  pathwaycateg = NULL, test = "Binom", numshow = 10,
  maintitlesize = "20px", ylabelsize = "10px", xlabelsize = "10px",
  xlabel = NULL, subtitle = "(color corresponds to p-value)",
  subtitlesize = "13px")

Arguments

input

results from GREAT enrichment analysis

maintitle

main title (default, "GREAT Enrichment Analysis")

pathwaycateg

ontology, to see available ontologies in your input results (e.g. named GREATpathways, type getOntologies(GREATpathways)

test

character, "Binom" uses binomial test restuls, "Hyper" uses hypergeometric test results. Default is "Binom"

numshow

number of top pathways (ranked according to p-value) of each type (expt, reference, shared) to show in the plot (default=10)

maintitlesize

main title size (default, 20px)

ylabelsize

size of ylabel (default, 10px)

xlabelsize

size of xlabel (default, 10px)

xlabel

label for x-axis (default, Experiment-specific, shared, Reference-specific )

subtitle

subtitle (default, "color corresponds to p-value")

subtitlesize

subitle size (default 15px)

Value

heatmap

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
## Not run: 
csvfile <- loadCSVFile("DNaseEncodeExample.csv")
samplePeaks <- loadBedFiles(csvfile)
consensusPeaks <- getConsensusPeaks(samplepeaks = samplePeaks, minreps = 2)
TSSannot <- getTSS()
consensusPeaksAnnotated <- combineAnnotatePeaks(conspeaks = consensusPeaks,
                                          TSS = TSSannot,
                                          merge = TRUE,
                                          regionspecific = TRUE,
                                          distancefromTSSdist = 1500,
                                          distancefromTSSprox = 1000)
consensusPeaksCounts <- getCounts(annotpeaks = consensusPeaksAnnotated,
                              reference = 'SAEC',
                              sampleinfo = csvfile,
                              chrom = 'chr21')
alteredPeaks <- countanalysis(counts=consensusPeaksCounts,
                             pval=0.01,
                             lfcvalue=1)
alteredPeaksCategorized <- categAltrePeaks(analysisresults = alteredPeaks,
                             lfctypespecific = 1.5,
                             lfcshared = 1.2,
                             pvaltypespecific = 0.01,
                             pvalshared = 0.05)
callPaths <- runGREAT(peaks = alteredPeaksCategorized)
pathResults <- processPathways(callPaths, pathway_category = "GO",
enrichcutoff = 2, adjpvalcutoff = 0.05)
plotGREATenrich(pathResults, maintitle = "GREAT Enrichment Analysis",
pathwaycateg = "GO_Molecular_Function")

## End(Not run)

Mathelab/ALTRE documentation built on May 7, 2019, 3:41 p.m.