Description Usage Arguments Details Value Author(s) See Also Examples
View source: R/PRE_FATE.speciesClustering_step3.R
This script is designed to calculate PFG traits values based on determinant species traits values. Either the mean or the median is used depending on the trait class (i.e. numeric or categorical).
1 | PRE_FATE.speciesClustering_step3(mat.traits)
|
mat.traits |
a
|
This function allows to obtain 'average' functional trait
values for each Plant Functional Group, based on values at the determinant
species level.
A graphic is automatically produced for each functional
trait given, with boxplot representing the values of determinant species,
and colored points the values calculated for each PFG.
However, some traits can have 'specific' representation, as long as their
names within mat.traits match one of the configuration detailed
below :
maturity, longevityto visualize the difference
between these two values, for the maturity time has an impact on the
fecundity of the PFG within FATE (see
CORE module)
If there is NO values for longevity within one PFG, and some
maturity values are available, some values might be inferred as
\text{maturity} * 2. If there is NO values for maturity within
one PFG, and some longevity values are available, some values might be
inferred as \text{longevity} / 2.
height, lightto visualize the PFG light
preference, and help decide and understand the choice of the height
limits of strata in FATE (see
LIGHT
competition module)
soil_contrib, soil_tol_min, soil_tol_maxto visualize the PFG soil preference, and help
parameterize the global parameters of the soil competition module
within FATE (see
SOIL
competition module)
soil_contrib, soil_tolerancesame as the
previous one, but soil_tol_min and soil_tol_max values
are obtained by adding or removing soil_tolerance to
soil_contrib
A list containing one data.frame with the following
columns, and one list with as many ggplot2 objects as
functional traits given in mat.traits :
PFGthe concerned plant functional group
no.speciesthe number of species contained in this PFG
...one column for each functional trait, computed as the
mean (for numeric traits) or the median (for categorical
traits) of the values of the determinant species of this PFG
...one for each functional trait, 'specific' cases
excepted (see
Details)
The information is written in ‘PRE_FATE_PFG_TABLE_traits.csv’ and
‘PRE_FATE_CLUSTERING_STEP_3_PFGtraitsValues.pdf’ files.
This .csv file can be used to build parameter files to run a
FATE simulation (e.g. PRE_FATE.params_PFGsuccession).
Maya Guéguen
PRE_FATE.speciesClustering_step1,
PRE_FATE.speciesClustering_step2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | ## Load example data
data(DATASET_Bauges_PFG)
## Species traits
tab.traits = DATASET_Bauges_PFG$dom.traits
str(tab.traits)
## Determinant species
sp.DETERM = DATASET_Bauges_PFG$dom.determ
str(sp.DETERM)
## Merge traits and PFG informations
mat.traits = merge(sp.DETERM[, c("species", "PFG")]
, tab.traits
, by = "species", all.x = TRUE)
## Compute traits per PFG : no specific graphic ----------------------------------------------
sp.PFG = PRE_FATE.speciesClustering_step3(mat.traits = mat.traits)
names(sp.PFG)
str(sp.PFG$tab)
names(sp.PFG$plot)
plot(sp.PFG$plot$DISPERSAL)
plot(sp.PFG$plot$LIGHT)
plot(sp.PFG$plot$MOISTURE)
## Compute traits per PFG : with one specific graphic ----------------------------------------
colnames(mat.traits) = c("species", "PFG", "GROUP", "DISPERSAL"
, "light", "NITROGEN", "MOISTURE", "height")
sp.PFG = PRE_FATE.speciesClustering_step3(mat.traits = mat.traits)
names(sp.PFG)
str(sp.PFG$tab)
names(sp.PFG$plot)
plot(sp.PFG$plot$height_light)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.